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 JAMES M. ROBINS

 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL
 MODELS*

 1. INTRODUCTION

 The subject-specific data from a longitudinal study consist of a string of
 numbers. These numbers represent a series of empirical measurements.
 Calculations are performed on these strings and causal inferences are
 drawn. For example, an investigator might conclude that the analysis
 provides strong evidence for "a direct effect of AZT on the survival of
 AIDS patients controlling for the intermediate variable - therapy with
 aerosolized pentamidine". The nature of the relationship between the sen
 tence expressing these causal conclusions and the computer calculations
 performed on the strings of numbers has been obscure. Since the computer
 algorithms are well-defined mathematical objects, it is useful to provide
 formal mathematical definitions for the English sentences expressing the
 investigator's causal inferences, In Robins (1986, 1987), I proposed a
 formal theory of counterfactual (Lewis 1973) causal inference that exten
 ded the Neyman-Rubin-Holland (Holland 1986) "point treatment" theory
 to longitudinal studies with time-varying treatments, outcomes, and covari
 ates (concomitants). This theory translates any causal question concerning
 the overall (net), direct, and/or indirect effects of a possibly time-varying
 treatment on an outcome into a formal mathematical conjecture about
 event trees, referred to as causally interpreted structured tree graphs.

 Pearl (1995), and Spirtes, Glymour, and Schemes (hereafter SGS)
 (1993) recently developed a formal theory of causal inference based on
 causal directed acyclic graphs (DAGs). I showed that these causal DAGs
 are mathematically equivalent to a particular special case of my more
 general theory (Robins 1995).

 In longitudinal studies, treatment often varies over time. The standard
 approach to the estimation of the effect of a time-varying treatment on
 an outcome of interest is to model the outcome at time ? as a function

 of past treatment history. I have shown that this approach may be biased,
 whether or not one further adjusts for the past history of time-dependent

 LJ Synthese 121: 151-179, 1999.
 Vf ? 2000 Kluwer Academic Publishers. Printed in the Netherlands.

This content downloaded from 
������������99.88.40.203 on Tue, 25 Jun 2024 22:43:19 +00:00������������ 

All use subject to https://about.jstor.org/terms



 152  JAMES M. ROBINS

 confounding covariates, when these covariates predict subsequent outcome
 and treatment history and are themselves influenced by past treatment
 (Robins 1986). In this setting, I have proposed several methods that can
 provide, under certain assumptions, valid estimates of the causal effect
 of a time-varying treatment in the presence of time varying confound
 ing factors. In Section 2, I describe one of these methods of estimation:
 inverse-probability-of-treatment weighted (IPTW) estimation of the para

 meters of a marginal structural model (MSM) (Robins 1998, 1999). These
 models are particularly useful in clarifying the difference between as
 sociation and causation, requiring that the reader have only a working
 knowledge of ordinary linear regression. IPTW estimation can consistently
 estimate the causal effect of a time-dependent treatment only if all relev
 ant confounding factors have been measured. In an observational study,
 the data provides no evidence as to either the existence or the magnitude
 of confounding by additional unmeasured factors. In view of this fact, a
 data analyst should perform a "sensitivity analysis" to quantify how one's
 inference concerning the causal effect of treatment varies as a function of
 the magnitude of confounding due to unmeasured factors. In Section 3,1
 describe how to conduct such a sensitivity analysis.

 My goal in this article is to indicate to non-statistical readers the sort
 of judgements and statistical tools required by practicing epidemiologists
 statisticians when attempting to evaluate the evidence for a causal effect
 of a time-varying treatment, in the context of a single observational study.
 I do not directly consider the problem of combining epidemiologic evid
 ence across studies or with other types of evidence, In my presentation, I
 purposely strike an attitude of indifference or obliviousness to the philo
 sophical problems raised by the methods I describe. For example, I freely
 use counterfactual outcomes without regard to the discomfort that raises
 for certain philosophers and statisticians. My attitude is much like that of
 a practicing physicist - these are the tools and concepts I require to get the
 job that I need to do done. I will describe clearly the job that needs doing
 and the tools that I and others have developed to do it. This is not to say
 that I myself do not have my own strong views about the philosophical
 underpinnings of the concepts I use. (See Robins and Greenland (2000)
 and Robins (1986) for my views.) Rather, I choose to have my own point
 of view take a back seat to the task of describing the methods used by
 myself and collaborators to evaluate causal effects.
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 153

 2. MARGINAL STRUCTURAL MODELS

 2.1. A Regression (Association) Model

 I now give a somewhat informal introduction to marginal structural mod
 els. I begin with the following setting. Consider an observational study of
 AIDS patients. Let A(t) be the dose of a treatment of interest, say AZT,
 at time t with time measured as days since start of follow-up. Let Y be an
 outcome of interest measured at end-of-follow-up at time K + 1. Suppose
 the study investigator states that his goal is to estimate the causal effect of
 the time-dependent treatment A(t) on the mean of Y. Let ?(t) = {A(u);
 0 < u < t} be treatment history through t and let L(t) ? {L(u)\
 0 < u < t} be the history through t of all measured prognostic factors
 L(u) for (i.e., predictors of) Y, such as CD4 lymphocyte count, white
 blood count (WBC), hematocrit, age, gender, etc. Both A(u) and L(u) are
 recorded daily so the functions A(t) and L(t) can jump at most once per
 day. We assume that a decision whether to take treatment on day t is made
 after knowledge of the covariates recorded in L(t) becomes available, so
 that A(t) is temporally subsequent to L(t). To keep matters simple, we
 unrealistically assume there is no missing data. In particular, no subject
 dies prior to day K + 1. Suppose F is a continuous outcome (e.g., Y is
 the number of milligrams of HIV RNA detectable in a cubic centimeter
 of blood), and we entertain a regression model that says the mean (i.e.,
 expectation) of Y given AZT history, ? = ?(K + 1), is a linear function
 of a subject's cumulative AZT dose. We write the model

 (1) E[Y\?] = g(?',y)
 where

 (2) g(?;y) = yx +y2cum(?).

 E stands for the expectation operator and cum(?) = f0 + A(t)dt ?
 Y^t=o MO is the subject's cumulative treatment. (As in much of the causal
 ity literature, I regard the n subjects as randomly drawn from a near-infinite

 hypothetical superpopulation of subjects about whom we wish to make
 inference. Expectations refer to averages in the superpopulation and prob
 ability statements to proportions in the superpopulation.) The ordinary
 least squares (OLS) estimator of y can then be computed from the ob
 served data 0? = (Li, Ai, Y i), i = 1, ..., n, on the n study subjects
 using standard software with Y as the outcome variable and cum(?) as
 the regressor. That is, the OLS estimator y of y ? (y\, y2Y minimizes
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 154  JAMES M. ROBINS

 the residual sum of squares Y^l=\^i ~ Y\ ~ K2Cum(?/)]2. Note that the
 residual sum of squares does not depend on the patient's prognostic factor
 history L? = Li(K + 1). The OLS estimator y2 is an unbiased estimator of
 the regression (association) parameter y2. We have assumed that the above
 linear form for the regression function g(?\ y) is correct, even though,
 in reality, any model will be incorrect, and will, at best, serve as a good
 approximation to the unknown regression function E[Y | ?].

 2.2. Causal and Statistical Exogeneity

 The question then is when does y2 have an interpretation as the causal
 effect of treatment history on the mean of y ? To approach this question,
 imagine that the decision to administer treatment at each time t were made
 totally at random by the treating physician and all subjects took their pre
 scribed treatment. In that hypothetical case, giving treatment at time t is not
 expected to be associated with any earlier measured or unmeasured pro
 gnostic factors (i.e., in the parlance of epidemiologists, there would be no
 "confounding") and therefore y2 would intuitively have a causal interpret
 ation. More generally, whenever the conditional probability of receiving
 treatment on day t given past treatment and prognostic factors history
 (measured and unmeasured) depends only on past treatment history, we
 say the treatment process is causally "exogenous" (equivalently, "ancil
 lary"). A formal mathematical definition is provided below after we define
 counterfactual outcomes. It is well-recognized in the social sciences, eco
 nometrics, epidemiologic, and biostatistical literature that y2 will have a
 causal interpretation if A(t) is a causally exogenous (or ancillary) covariate
 process.

 We say that a treatment A(t) is a statistically "exogenous" ("ancillary")
 process if the probability of receiving treatment at time t does not depend
 on the history of measured time-dependent prognostic factors L(t) up to t
 conditional on treatment history prior to t, i.e.,

 (3) ?(oJJa(?)Ia(?-i),
 where A \J B \ C means that A is independent of B given C. An essen
 tially necessary condition for A(t) to be "causally exogenous" is for it
 to be "statistically exogenous". However, that a process is "statistically
 exogenous" does not imply it is "causally exogenous", because there may
 be unmeasured prognostic factors (i.e., confounders) that predict the prob
 ability of treatment A(t) at time t given past treatment history. We can test
 from the data whether A(t) is statistically exogenous but are unable to test
 whether a statistically exogenous process is causally exogenous. We warn
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 155

 the reader that there is no agreed upon definition of "causally exogenous"
 or "statistically exogenous" in the literature. I find my definition quite
 useful and appropriate, but there are other definitions. In particular, the
 definitions I have given here do not agree with the definition of exogeneity
 found in the econometric time series literature (Ericcsson et al. 1998).

 Suppose A(t) is discrete and we can correctly model both the probab
 ility f[a(t) | I(t), d(t ? 1)] of taking treatment a(t) on day t as a function
 of past treatment d(t ? 1) and measured prognostic factor history l(t), and
 the probability f[a(t) | ?(i ? 1)] of taking treatment a(t) on day t as a
 function only of past treatment d(t ? 1) history. Here we use the convention
 that random variables (i.e., variables whose values can differ from subject
 to subject) are denoted by upper case letters. Lower case letters denote
 possible values of the corresponding random variables. Thus, for example,
 f[a(t) | d(t ? 1)] is the proportion of subjects in the superpopulation with
 treatment A(t) equal to a(t) among subjects with past treatment history
 A(t ? 1) equal to d(t ? 1). We could then measure the degree to which
 the treatment process is statistically non-exogenous through day t by the
 random product

 t

 W(0 = n^[AW ! ?(k - 1}' Uk)]/f[A(k) I ?(k - l)]}.

 Informally, the numerator in each term in IV(t) is the probability that
 a subject received his own observed treatment at time k, A(k), given
 his own past treatment and prognostic factor history. The denominator
 is, informally, the probability that a subject received his observed treat

 ment conditional on his past treatment history but not further adjusting
 for his past prognostic factor history. Note that the treatment process is
 statistically exogenous just in the case that ^(r) = 1 for all t. Formally,
 f[A(k) | ?(k - 1), L(k)] and f[A(k) \ ?(k - 1)] are random variables
 obtained by replacing a(k), a(k ? 1) and l(k) with the corresponding ran
 dom variables in the conditional probability functions f[a(k) \ ?(k ? 1),
 ?(k)] and f[a(k) \ ?(k ? 1)]. Of course, in an observational study, 'W(t) is
 usually unknown and will have to be estimated from the data by specifying
 and fitting statistical models for the terms in the numerator and denomin
 ator of y?(t). However, for pedagogic purposes, assume that y?(t) were
 known.

This content downloaded from 
������������99.88.40.203 on Tue, 25 Jun 2024 22:43:19 +00:00������������ 

All use subject to https://about.jstor.org/terms



 156  JAMES M. ROBINS

 2.3. IPTW Estimators

 When A(t) is a statistically non-exogenous process, we shall consider es
 timation by weighted least squares regression in which a subject is given
 the weight

 w~l = [^(/or1.

 The weighted regression estimator, say ?, minimizes the weighted re
 sidual sum of squares Xw=i "W^ 1[yf- ? y\ ? y2c\xm(Ai)]2 and can be
 computed using standard off-the-shelf software packages. We shall refer to
 this weighted regression estimator as an inverse-probability-of-treatment
 weighted (IPTW) estimator. This weighted regression estimator would
 agree with the usual unweighted estimator y just in the case in which A(t)
 is exogenous. The somewhat surprising result described in detail below is
 that, if the vector of prognostic factors recorded in L(t) constitutes all rel
 evant time-dependent prognostic factors (i.e., confounders), then, whether
 or not the treatment process is statistically exogenous, the weighted re
 gression estimator of y2 will unbiasedly estimate a quantity ?2 that can be
 appropriately interpreted as the causal effect of treatment history on the
 mean of Y. In contrast, when A(t) is statistically nonexogenous, the OLS
 regression estimator will still estimate the parameter y2, but now y2 will
 have no causal interpretation.

 To prove such a claim, we need to give a formal mathematical meaning
 to the informal concept of the causal effect of treatment history on the

 mean of Y. To do so, we reinforce some notational conventions we have
 already been using. We use capital letters to represent random variables
 and lower case letters to represent possible realizations (values) of random
 variables. For example, 0? is the random observed data for the /th study
 subject and o is a possible realization (value) of 0?. Further, we assume
 that the random vector 0? for each subject is drawn independently from
 a distribution common to all subjects, i.e., the Oz are independent and
 identically distributed. Because the Oz have the same distribution, we often
 suppress the / subscript. Note the aforementioned superpoplation model
 implies that the 0? are independent and identically distributed.

 2.4. A Marginal Structural Model

 Now we introduce counterfactual or potential outcomes. For any fixed
 non-random treatment history a ? {a(u); 0 < u < K + 1}, let Y? be
 the (possibly counterfactual) random variable representing a subject's out
 come had, possibly contrary to fact, the subject been treated with history
 ? rather than his observed history A. Note the ?'s are possible realizations
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 ASSOCIATION, CAUSATION. AND MARGINAL STRUCTURAL MODELS 157

 of the random variable ?. For each possible history ?, we are assuming
 a subject's response Y? is well defined (although generally unobserved).
 Indeed we only observe Y-a for that treatment history a equal to a subject's
 actual treatment history A, i.e.,

 (4) Y = YA.

 The above identity is the fundamental "consistency" assumption that
 links the counterfactual data F? to the observed data (Y, ?). Note that, if
 on each day t, A(t) can take but one of two values (0 for untreated and
 1 for treated) and the study duration K is 300 days, then there are 2300

 different Y-a values associated with each subject.
 Formally, our statement that the effect of treatment history on the mean

 of y is a linear function of cumulative treatment is the statement that, for
 each a,

 (5) E[Ya] = g( , ?), where g(?; ?) = ?x + j82cum(?),

 which we refer to as a marginal structural model (MSM) for the effect of
 treatment on the mean of Y. This model for E[Y?] is a marginal structural

 model since it is a model for the marginal distribution of counterfactual
 variables (rather than for the joint distribution, e.g., the correlation matrix,
 of the Y?) and, in the econometric and social science literature, causal
 models (i.e., models for counterfactual variables) are often referred to as
 structural. Note that a MSM is a model for the overall (i.e., net) effect of
 the treatment history ? on the outcome Y, since it is oblivious to particular
 causal pathways or mechanisms by which the treatment has its effect. The
 relationship of our MSM (5) to our regression model (l)-(2) can be clearly
 seen, by expressing our regression model as

 (6) E[Yd | ? = a] = g(?; y) where g(?; y) = y\ + 72cum(?).

 Note (6) is equivalent to (l)-(2) since, by (4), we can substitute Y for
 Y? in (6) and obtain E[Y | ? = ?] = g(?; y) which is equivalent to (1).
 From (6), we see that a regression model is a model for the conditional
 mean of Y? given ? = a.

 We now show that the parameter ?2 encodes the magnitude of the aver
 age causal effect of the treatment on the outcome. By definition, the causal
 effect of treatment regime a on the outcome Y for a given study subject is
 the difference Y~? ? Fq between her outcome Y? when treated with regime ?,
 and her outcome Y^ when never treated. Here ? is the K + 1 vector of 0's.
 Thus E[Y? ? Yq] = E[Y?] ? E[Y^] is the average causal effect of regime
 a in the superpopulation, which under our MSM (5) is ?2cx\m(d).
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 158  JAMES M. ROBINS

 ?2 is also of important policy interest. To see why, consider a new
 subject exchangeable with (i.e., drawn from the same distribution as) the n
 study subjects. We must decide which treatment history ? to administer to
 the new subject. We would like to provide the treatment that minimizes the
 expected amount of HIV RNA in his blood at end of follow-up. That is,
 we want to find ? that minimizes E[Y?]. (Technically, we would choose to
 minimize E(Y?) under a squared error loss function.) Thus, for example,
 if the parameter ?2 of our causal model is positive, we will withhold AZT
 treatment from our subject (i.e., we will give him the treatment history ?),
 since positive ?2 indicates that the expected amount of HIV RNA in one's
 blood at the end of follow-up increases with increasing cumulative AZT
 dose. In contrast to ?2, the parameter y2 of our association (regression)
 model (1) may have no causal interpretation. For example, suppose phys
 icians preferentially started AZT on subjects who, as indicated by their
 prognostic factor history, were doing poorly and that AZT has no causal
 effect on the mean of Y (i.e., ?2 - 0). Nonetheless, the mean of Y will
 increase with cumulative AZT dose (since patients with poor prognostic
 factor history, say low white blood count, will have higher levels of HIV
 RNA and will have received more AZT treatment). Thus y2 will be posit
 ive. In this setting, we say that the parameter y2 of the association model
 lacks a causal interpretation because it is confounded by the association
 of the prognostic factors L(u) with the subsequent treatment A(u). If we
 made policy decisions as to the optimal AZT dose based on the parameter
 y2 rather than ?2, we may well be doing many of our patients a potentially
 fatal disservice. For example y2 might be positive even if AZT was benefi
 cial and thus ?2 was negative, if the selection bias (i.e., confounding) due
 to physicians preferentially treating subjects with low white blood counts
 is of greater magnitude than the true beneficial effect of AZT on Y as

 measured by the absolute value of ?2.

 2.5. The Assumption of No Unmeasured Confounders

 Formally, in terms of counterfactuals, we say that the A(t) process is
 "causally exogenous" if, for all histories ?, Y? is independent of the dose
 of treatment on day t given past treatment history, i.e.,

 (7) Ya]jA(t)\?(t-l),
 which is mathematically equivalent to the statement that Y? is independent
 of the subject's entire treatment history, i.e.,

 (8) Y?\j?.
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 ASSOCIATION. CAUSATION, AND MARGINAL STRUCTURAL MODELS 159

 Note that even when A(t) is "causally exogenous", if the treatment has an
 effect on the outcome, then the observed outcome Y ? YA will not gen
 erally be independent of A, since YA is a function of a subject's observed
 treatment history A itself. When A(t) is causally exogenous, we say there
 is no confounding by either measured or unmeasured factors.

 Remark: In the context of the causal DAG theory of nonparametric
 structural equation model of Pearl (1995) and Spirtes et al. (1993), we
 would say a treatment process is causally exogenous if there are no arrows
 into any of the treatment variables on a causally sufficient DAG represent
 ing the data, except for those originating from other treatment variables.

 This definition implies but is not implied by my definition (7). It is only
 my weaker definition (7) that is relevant when considering the causal effect
 of the treatment process ? on the outcome Y.

 Given the covariates recorded in L(t), we say there are no unmeasured
 confounders if, for each a, Y?1 is independent of the treatment A(t) at time
 t given the past treatment and measured covariate history:

 (9) F?]jA(0 \L(t),?(t-\).

 With these formalizations, it can then be shown mathematically, that, in
 the absence of model misspecification, when there are no unmeasured
 confounders, (i) statistical exogeneity (3) implies causally exogeneity (7),
 (ii) the IPTW estimator is unbiased for and converges in probability to
 the parameter ?2 of the marginal structural model (5) for E[Y?] and
 (iii) the probability limit y2 of the usual OLS estimator generally differs
 from the causal parameter ?2 of the MSM unless the treatment process is
 statistically exogenous.

 We shall also refer to the assumption of no unmeasured confounders
 as the assumption that treatment A(t) is sequentially randomized given
 the past. The assumption states that, conditional on AZT history and the
 history of all recorded covariates prior to t, increments in AZT dosage
 rate at t are independent of the counterfactual random variables Y(~?. This
 assumption will be true if all prognostic factors for, i.e., predictors of, Y?
 that are used by patients and physicians to determine the dosage of AZT at
 t are recorded in L(t) and ?(t ? 1). For example, since physicians tend to
 withhold AZT from subjects with very low white blood count (WBC), and
 in untreated subjects, low white blood count is a predictor of HIV RNA,
 the assumption of no unmeasured confounders would be false if L(t) does
 not contain WBC history. It is the primary goal of the epidemiologists
 conducting an observational study to collect data on a sufficient number
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 160  JAMES M. ROBINS

 of covariates to ensure that the assumption of no unmeasured confounders
 will be at least approximately true.

 The assumption of no unmeasured confounders is the fundamental con
 dition that will allow us to draw causal inferences from observational data.

 It is precisely because it cannot be guaranteed to hold in an observational
 study and is not empirically testable that it is so very hazardous to draw
 causal inferences from observational data. Later we discuss how the con

 sequences of violations of the assumption of no unmeasured confounders
 can be explored through sensitivity analysis.

 On the other hand, the assumption of no unmeasured confounders is
 guaranteed to be true in a sequential randomized trial. A sequential ran
 domized trial is a trial in which, at each time t, the dose of treatment is
 chosen at random by the flip of a coin, with the probability of a heads
 depending both on past measured covariate L(t) and treatment history
 ?(t ? I). It is because physical randomization guarantees the assump
 tion that most people accept that valid causal inferences can be obtained
 from a randomized trial. See Rubin (1978), Robins (1986) and Holland
 (1986) for further discussion. (To the reader who might try to read my
 early papers, the assumption of no unmeasured confounders was encoded
 in Robins (1987, 327) in an event tree referred to as a CISTG randomized

 with respect to Y for treatment g ? a given covariates L.)

 2.6. Why Weighting Controls Confounding

 We now explain why weighting by IV ~x corrects our OLS regression es
 timator y2 for the "confounding" due to the measured prognostic factors in
 L(t). The first point to note is that in the definition of IV(t), we could have
 replaced the denominator f[A(t) | ?(t ? 1)] by any other function of treat

 ment history ?(t) without influencing the consistency or unbiasedness of
 our weighted estimator of the parameter ?2 of the MSM; only the efficiency
 (variance) of our estimator would be influenced. (An estimator is consist
 ent for a parameter if, as the sample size increases to infinity, the estimate
 converges to the parameter in probability.) However, our estimator would
 be inconsistent if we replaced the numerator by any other function of ?(t)
 and L(t). Thus one can informally view weighting by IV~x as weighting by
 the inverse of a subject's probability of having his own observed treatment
 history. This explains why we refer to our weighted regression estimator
 as an inverse-probability-of-treatment weighted (IPTW) estimator. Now
 view each person as a member of a pseudo- or ghost population consisting
 of themselves and MV~X ? 1 ghosts (copies) of themselves who have been
 added by weighting. In this new ghost or pseudo population, it is easy to
 show that L(t) does not predict treatment at t given past treatment his
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 161

 tory, and thus we have created a pseudo-population in which treatment is
 exogenous. Furthermore, the causal effect of ? on y in the ghost popu
 lation is the same as in the original population. That is, if E[Y?] ? g(?;
 ?) in the true population, the same will be true of the ghost population.
 Hence, we would like to do ordinary least squares regression in the pseudo
 population. That is what our weighted regression estimator is doing, since
 the weights create, as required, IV~x ? 1 additional copies of each subject.

 Remark: In a sequential randomized trial not only is the assumption
 (9) of no unmeasured confounders guaranteed to hold, but in addition the
 treatment probabilities f[a(k) \ d(k ? 1), I(k)] are under the control of the
 investigator and thus known. However, the probabilities f[a(k) | ?(k ? 1)]
 are not known and must be modelled and then estimated from the data. It

 follows from the above discussion that even if the model for f[a(k) \ ?(k ?
 1)] is misspecified, the IPTW estimator of ? is consistent in a sequential
 randomized trial. In an observational study, our IPTW estimator will be
 consistent only if we can succeed in the difficult task of specifying a correct
 model for the unknown probabilities f[a(k) | ?(k ? 1), ?(k)].

 Remark: Difficulties with fully parametric likelihood based infer
 ence: Our inverse-probability-of-treatment weighted estimator for the
 parameter ? of our MSM is so simple to calculate that essentially any
 computer-literate practicing epidemiologist or social scientist could com
 pute it using available statistical packages. Furthermore, it is guaranteed to
 be consistent for the parameter ? of the MSM (5) when the data are from
 a sequentially randomized trial. However, it is not based on the likelihood
 function. Indeed, from the point of view of a Bayesian or pure likelihood
 ist, our IPTW estimator seems inappropriate, since it requires that we either
 know or model the densities f(Ak \ Lk, ?k_\) and, under the sequential
 randomization assumption (9), the likelihood function for the parameter ?
 of our MSM does not depend on f(Ak \ Lk, ?*_i). That is, our IPTW
 estimator of ?2 is not a likelihood-based estimator. However, as discussed
 in Appendix 1, a parametric likelihood-based or Bayesian estimator of the
 parameter ? of our MSM can be computationally difficult or intractable,
 and, more importantly, will nearly always be inconsistent for ? due to
 inevitable model misspecification, even when treatment is statistically and
 causally exogenous and the f[a(k)\?(k?l), ?(k)] = f[a(k) \ d(k - 1)]
 are known, as would be true in a sequential randomized trial in which the
 treatment probabilities only depended on past treatment history.
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 162  JAMES M. ROBINS

 2.7. Why Standard Regression Adjustment Fails to Control Confounding

 One might suppose that an alternative approach to controlling confounding
 by measured covariates is to fit by OLS a regression model that adjusts for
 confounder history L = LK by adding the confounders to the model as
 regressors such as

 E[Y | ?, L] = 90 + 9X cum(?) + 62 cum(L)

 + e3L(K) + e4L(K -1)

 where, for notational convenience, we assume that L(k) is univariate.
 However, even under the assumption of no unmeasured confounders, the
 parameter 0\ can differ from the causal parameter ?2 of our MSM. This
 may not seem particularly disturbing, since one may hope that the para
 meter 9\ represents the direct effect of treatment on Y not mediated through
 pathways involving the covariates L while the parameter ?2 of our MSM
 represents the overall (direct and indirect) effects of treatment ? on Y.
 Unfortunately, this is not necessarily so. Indeed, it is easy to show that the
 parameter 9\ can differ from zero even under the causal null hypothesis
 that treatment history ? has no causal effect on the outcome, either directly
 or through pathways including the covariate history L. This is true even
 though the association (regression) model for E[Y | ?, L] is correctly spe
 cified and the assumption (9) of no unmeasured confounders is true. The
 problem is that covariate cum(?) depends on a subject's entire treatment
 history including, for example, A(0). However, A(0) may affect the time
 dependent covariates L(k) and L(k ? 1), for example. A regression model
 that adjusts for a covariate L(K) that is both affected by earlier treatment
 A(0) and itself predicts the outcome can result in a biased estimate of the
 treatment effect (even under the null hypothesis of no direct, indirect, or
 overall treatment effect). Specifically, this will occur whenever there exists
 an unmeasured baseline covariate U0 that (i) is a cause of both L(K) and
 Y but (ii) is independent of the A(k) given L(k), ?(k ? 1). See Robins
 (1986), Robins and Wasserman (1997) and Rosenbaum (1984) for further
 discussion.

 To summarize standard regression methods adjust for variables by in
 cluding them in the model as regressors. These standard methods fail to
 appropriately adjust for confounding due to measured confounders L(k)
 when treatment is time-varying since (i) L(k) is a confounder for later
 treatment and thus must be adjusted for, but (ii) may also be affected
 by earlier treatment and thus cannot be adjusted for. The solution to this
 conundrum is to adjust for the time-dependent covariates L(k) by using
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 163

 them to calculate the weights IV "l rather than by adding them to the
 regression model as regressors.

 2.8. Estimation of Direct Effects

 Suppose A(t) = (Ap(t), Az(t)) is comprised of two treatments: AZT
 treatment Az(t) and aerosolized pentamidine (AP) treatment AP(t). Let
 cum(Ap) and cum(Az) denote cumulative treatment with AP and AZT
 respectively. Then in the MSM

 E[Y?] = g(?; ?8), where g(?; ?) = ?i + ?2 cum(?i)

 + ?3 cum(?7) + ?4 cum(?z)cum(?p"),

 ?i represents the direct effect of AP on the mean of Y when AZT is with
 held, and ?3+?4 represents the direct effect of AP when all subjects receive
 continuous treatment with AZT. IPTW estimation of ? is performed as
 above.

 2.9. Formal Mathematical Justifications

 The following lemma is the key to providing a formal, mathematical ex
 planation of why weighting by IV~x corrects our regression estimator for
 "confounding".

 LEMMA 2.1. Under the sequential randomization assumption (9), E(Y?)
 is a unique function c(?) of ? such that E[q(?)(Y ? c(A))/yV] = 0 for all
 functions q(?) where the expectation exists.

 Consistency of our weighted estimator for the parameter ? of our MSM
 (5) then follows from the fact that (i) the IPTW estimator ? minimizing the

 weighted residual sum of squares can also be characterized as the solution
 to the weighted least squares "normal" equation

 n

 (10) 0 = Y,Ui(?u?2)
 1=1

 where

 (11) U(?u?2) = ,W~1(l,cum(^)),[l/-j?1 -/?2Cum(?)],

 and (ii) the probability limit of our weighted least squares "normal" equa
 tion is E[q(?)(Y - c(?))fW] = 0 with q(?) = (1, cum(?))' and
 c(?) = Y - ?x - ?2c\xm(?).
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 164  JAMES M. ROBINS

 2.9.1. A Proof Based on the G-Computation Algorithm Formula
 We now sketch a proof of Lemma (2.1). It is somewhat more technical
 than the remainder of the paper and can be skipped on first reading.
 Given the assumption of no unmeasured confounders and a particular
 positivity assumption on the joint distribution of the observables, Robins
 (1987, Corollary to Theorem 1; 1997, Theorem 3.2) shows the mean
 of the dichotomous variable Y? is non-parametrically identified from the
 joint distribution F0 of the observed data O by the non-parametric g
 computation algorithm functional h(a) of Robins (1986). Specifically,
 E{Y-a) = b(a) where

 is

 (12) b(?) = f - -. f E(Y | lK, ?K) fl /(/* | 4_!, ?*_,) d/x(4)

 /x is a dominating measure, by convention /_i = ?-\ =0, and for
 notational convenience we have written any z(k) as Zk and z(k) as zk- If
 covariates Lk are discrete random variables, the integrals in (12) are simply
 sums and (12) can be written

 K

 b(?)= J2 E[Y\?K9aK]Y\f(lk\?k-uak-i).

 The required positivity assumption (which we shall assume is true) is
 that, given ? = (a0, ..., aK), for each possible lk

 (13) if/(4,?*-i) > 0, then/fe | lk,ak^x) > 0,

 which essentially says that if any set of subjects at time k have the oppor
 tunity of continuing on the treatment regime a under consideration, at least

 some will take that opportunity.
 The g-computation algorithm functional h (a) can be characterized

 using the language of directed acyclic graphs. Specifically, b(a) is the
 marginal mean of Y in the manipulated subgraph of the directed acyclic
 graph (DAG) G representing the observed data O in which all arrows into
 the treatment variables ? = (A\, ..., ?K) have been removed and ? is
 set to a with probability 1 (Spirtes et al. 1993). More specifically, let DAG
 G be the complete DAG with temporally ordered vertex set O = {L0, Ao,
 L\, A\, ..., AK, Y) and let DAG Gcl be the subgraph of G in which all
 arrows into the Ak, k = 0,..., K have been cut. Then b(?) is the marginal
 mean of Y based on a distribution for O represented by DAG G? in which
 f(Ak | A?-i, Lk) is replaced by a degenerate density that takes the value
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 165

 ak with probability 1 while the conditional density of each other variable
 in the set O given its parents remains as in F0.

 We say that the distribution of O ? {L0, A0, L\, A\, ..., AK, Y) is
 standardly parameterized if, for each variable in O, we have specified a
 parametric (or semiparametric) model for the conditional distribution of
 that variable given its temporal predecessors (the past) and the parameters
 of each conditional model are variation-independent of those of any other
 conditional model. When our goal is to estimate the effect of a sequential
 (time-dependent) treatment ? on an outcome Y, Lemma 1 and Theorem 2
 of Robins and Wasserman (1997) imply that inference procedures based on
 the standard parameterization will fail. Specifically, they prove that com

 mon choices for the parametric families in a standard parametrization often
 lead to joint densities such that the g -computation formula b(a) for E(YC-,)
 can never satisfy the causal null hypothesis that E(Y?) is the same for all
 a. (In particular, as discussed above, the causal null hypothesis does not
 imply that Y \\ AK \ LK.) As a consequence, in large samples the causal
 null hypothesis, even when true, will be falsely rejected regardless of the
 data. Robins and Wasserman propose reparameterizing the distribution
 of O using structural nested models. MSMs represent an alternative re
 parameterization that also overcomes the fatal deficiencies of the standard
 parameterization.

 The following characterization due to Robins et al. (1999, Theorem
 7.1) of the ^-computation algorithm functional b(?) defined in (12) above
 indicates why weighting by W"1 controls confounding by measured
 covariates.

 LEMMA 2.2. b(a) defined in (12) is the unique function c(?) of ? such
 that E[q(?)(Y - c(?))/rW] = 0 for all functions q(?) for which the
 expectation exists.

 Lemma 2.1 is an immediate corollary of Lemma 2.2.

 2.9.2. A Purely Causal Proof
 Under a mild strengthening of our assumption of sequential randomization
 (no unmeasured confounders), a simple, self-contained, quite revealing,
 purely "causal" proof of Lemma 2.1 can be obtained that does not use the
 fact that E(Y?) is given by the ^-computation algorithm formula b(a) of
 Equation (12). Let Y? = {F?; ? e ?} be the set of all counterfactuals.
 Here ? is the support of the random variable ?. Suppose we strengthen
 our assumption of no unmeasured confounders to

 Y?\\Ak\Lk,?k-\.
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 166  JAMES M. ROBINS

 That is, the treatment Ak is jointly independent of the set of all counterfac
 tuals given the measured past. Then we have the following proof of Lemma
 2.1. Denote the total factual and counterfactual data by Z = (Y^, ?, L)
 and the observed data by O = (Y = Y?, ?, L). With the strengthened
 assumption of no unmeasured confounders, we can factor the true joint
 density of Z that generated the data as

 K

 f(Z) = f(Y?)Y[f(Lk\Lk^,?k^,Y?)
 k=0

 K

 xY\f(Ak\Lk,?k^).
 k=0

 Now let f*(Ak | ?ic-i) be a density for Ak given ?k_\. It need not equal
 the true density f(Ak | A?_i). Let /*(Z) be a joint density for Z that
 differs from the true joint density f(Z) only in that f*(Ak \ Lk, ?k^\) =
 f*(Ak | A?_i) so that Ak is statistically and thus causally exogenous were
 the data generated under f*(Z). Thus,

 K

 f*(Z) = f(Y?) Y\ f(Lk | Lk-u ?*_,, Y?)
 k=0

 K

 *Y\r(Ak i ?ik-i).

 Now, we see at once that E(Y?) = E*(Y?) since f(Z) and /*(Z) have
 the same marginal distribution for Y?. Second, a simple calculation shows
 that ? is causally exogenous under f*(z) [i.e., Y? ?J* ?]. Thus, we have
 that ?*[y?] = E*[Y-a | ? = a\ = E*[Y? | A = a] = ?*[7 | ? = ?]
 where the first equality is by independence, the second by the properties
 of conditional expectations, and the third by the consistency assump
 tion Y? = Y. Hence, we have formally proved the result informally
 argued above that when ? is causally exogenous, the marginal mean
 of Y ? is given by the regression function E*[Y \ ? = ?] of F on
 A ? a. Now it is a standard statistical result that the regression func
 tion E*(Y | A = a) is characterized as the unique function c(?) solving
 E*{q(?)[Y - c(?)]} = fq(?)(Y - c(?))/*(Z) d/x(Z) = 0 for all q(?)
 where /x is a dominating measure. But, f q(A)(Y ? c(A))f*(Z) d/x(Z) ?

 fq(A)(Y-c(?))g?f(Z)dti(Z) = E[q(A)(Y-c(?))g?] where
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 167

 the first equality is by algebra and the second is by the definition of an

 expectation with respect to f(Z). But, by definition, y^- ? W"-1 if we
 choose f*(Ak | A?_i) equal to f(Ak\?k^.\). Lemma 2.1 then follows, by
 ?*(F \A = ?) = E(Y?).

 The proof also makes clear that consistency of our weighted estimator
 does not require that we choose

 f(Ak\?k^) = f(Ak\?k^).

 3. SENSITIVITY ANALYSIS FOR UNMEASURED CONFOUNDERS

 3.1. A Sensitivity Analysis Methodology

 We have seen that under the assumption of no unmeasured confounders,
 our inverse-probability-of-treatment-weighted estimator ? consistently es
 timates the parameter ? of an MSM that encodes the strengths of the
 causal effect of treatment history on the outcome Y. However, the as
 sumption of no unmeasured confounders itself is not testable based on the
 observed data O. Thus, in an observational study, we never know whether
 our assumption of no unmeasured confounders is true. In a randomized
 or sequential randomized study, we will know it is true only because we
 physically randomized using a coin or some other physical randomization
 device. The data themselves give no indication. Thus, in observational
 studies, it is of interest to conduct a sensitivity analysis to quantify how
 our inferences concerning the causal effect of a treatment on the outcome
 vary as a function of the magnitude of (nonidentifiable) confounding by
 unmeasured factors. In this section, we describe how to conduct such a
 sensitivity analysis.

 Our first task is to develop a measure that quantifies in a useful way the
 degree of confounding due to unmeasured factors. Consider the function

 (14) qm(?m,?, a*,) = E[Yd \ ?m,?m^,am] - E[Y? \ lm,?m^,a*J.

 Again, for notational convenience, we have written z(k) as Zk and z(k)
 as Zk- To help understand why this function is a useful measure of the
 magnitude of confounding due to unmeasured factors, fix a treatment his
 tory ? ? ?K through the end of the study. Fix a time m. Now consider
 the subgroup of the study population with a particular covariate history
 lm through day m who has followed the particular treatment history am-\
 through day m ? 1 consistent with the treatment regime a. Consider next
 both the subset of this subgroup who continued at day m with the treatment
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 168  JAMES M. ROBINS

 am consistent with the regime ? and the subset who left the regime ? on
 day m and took instead treatment a*. Then qm(?m, ?, a* ) is precisely the
 difference of the mean of the counterfactual ?? between these two subsets.

 In particular, if am ? a*m, qm(Jm, ?, am) ? 0, since then the second of the
 subsets did not actually leave the regime on day m and the two subsets are
 identical.

 Now if the assumption (9) of no unmeasured confounders holds, we
 see that qm(?m, ?, a* ) is identically zero, since the assumption of no un

 measured confounders implies Y? is mean-independent of Am given the
 past Lm?m-i. Indeed, qm(Im, a, 0* ) is a natural measure of the magnitude
 of non-comparability with respect to the mean of Y? of the two subsets
 mentioned above due to unmeasured confounding.

 Suppose now that instead of imposing the assumption qm(Im, a, a* ) =
 0 of no unmeasured confounders, we impose the assumption that

 (15) qm(?m, (?,0^) is some specified non-zero function.

 Robins et al. (1999) prove that assumption (15) places no restrictions on
 the joint distribution F0 of the observed data, and thus the assumption
 cannot be rejected by any statistical test. We say that a parameter or func
 tion is identified if it can be determined from the joint distribution of the
 observed data. The result just stated implies that the selection bias function

 ^m(lm^d,a^) is not identified. Indeed, without further assumptions, the
 observed data distribution places no restrictions on the possible values of
 the function except for the structural requirement that qm(Im, ?,a^) equals
 zero if a* equals the treatment am specified by a. However, Robins et
 al. (1999) prove that for each choice of qm(lm, a, a* ), the mean of Y-a is
 identified (determined) by the joint distribution F0 the data. Specifically,
 they prove

 LEMMA 3.1. Under assumption (15), E(Y?) is identified for each ? from
 the joint distribution of the observed data O = (Y, LK, ?K). Specifically,
 E(Y?) is the unique function c(?) such that

 (16) 0 = E
 K

 m=0
 W-lq(A) K-> \ qm(Lm,A,a*m)

 dF(a* | L?, Am_,) - c{A) I]
 for all functions q(A) for which the expectation is finite.
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 169

 Note our previous Lemma 2.1 is the special case of Lemma 3.1 with qm
 chosen to be identically zero. Indeed, Lemma 3.1 can be interpreted as
 saying that Lemma 2.1 remains true if we replace the observed data Y on

 each subject by the select ion-bias-corrected version Y ? ^2^=o f ^m(Lm,
 ?, a*m)dF(a* \ Lm, ?m_i). Note that the integral in (16) becomes the sum

 / J?m(Em> A, am)j (am \ Lm, Am_\)
 am

 when Am is a discrete random variable. Indeed, in the special case in
 which Am is a dichotomous (0, 1) treatment indicator, the sum evaluates
 to qm(Lm, ?, l)pr(Am = 1 | Lm, ?m_i) for a subject with observed
 treatment Am ? 0 and to qm(Lm, ?, 0)pr(Am = 0 | Lm, ?m_0 for
 subject with observed treatment Am = 1.

 Thus, given the distribution F0 of the observed data and a particular
 choice of qm(Jm, a, a* ), the causal dose-response relationship E(Y?) =
 c(?) is determined. It follows that for any given distribution F0 of the
 observed data O, we can tabulate in a sensitivity analysis the dose-response
 relationship c(a) as a function of the non-identified selection bias function
 qm. In practice, the distribution F0 of O is unknown, but the distribution
 can be estimated by the empirical distribution Fn of the data that puts
 probability mass \/n on each of the observations O, for subjects / = 1,
 ..., n.

 The reader should not be discouraged that we only provide a sensitivity
 analysis. Since the function qm represents the magnitude of confounding
 (i.e., selection bias) due to unmeasured factors, it would not be desirable
 or scientifically reasonable for qm to be identified in the absence of fur
 ther knowledge of these factors. Our sensitivity analysis formalizes this
 desideratum; we cannot identify the selection bias function qm, but we can
 identify the dose-response function c(a) as a function of qm. Since the
 data contain no independent evidence about qm, final substantive conclu
 sions would depend upon the functions qm that are considered plausible by
 relevant subject-matter experts. A convenient approach to carrying out a
 practical sensitivity analysis is as follows.

 (i) First, specify a relatively parsimonious model for the dose-response
 function in which the magnitude and shape of the dose-response function
 can be summarized by reporting the value of just a few parameters. A
 particularly simple example would be our model

 E(Ycl) = ?]+?2cum(?)

 in which ?2 summarizes the effect of treatment on the outcome;
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 170  JAMES M. ROBINS

 (ii) Second, choose a simple parameterized form for the selection bias
 function qm with parameter a, such as

 (17) qm(J?u ?, a* ; a) = a[am - a*m]

 so that the choice a = 0 corresponds to the assumption of no unmeasured
 confounders. Analyzing the data under the assumption that a is positive
 implies that less healthy subjects (subjects with high counterfactual HIV
 RNA Y??) are given higher doses of treatment (even after we control for
 past confounder history Lm and past treatment history ?m-\). This would
 be the case if physicians gave higher doses of AZT to patients who have un
 favorable prognostic factors for the outcome and these prognostic factors
 were not recorded in Lm for data analysis. In contrast, a negative value for
 a implies that healthy subjects were preferentially given higher doses of
 treatment even after adjusting for past treatment and measured covariate
 history.

 (iii) Third, to implement our sensitivity analysis, we choose a large
 number of values for a, and for each choice of a separately, we obtain
 an estimate ? = (?\, ?2) of ? by solving the empirical analog of Equation
 (16) with q(?) = (1, cum(?))' and c(?) = ?x + y?2cum(?). That is,

 we solve the weighted least squares normal equations with each subject's
 observed outcome Y replaced by their selection-bias-corrected outcome
 Y (a) = Y- ?2m=of<im(Lm, ?, ?i* ; a) dF(a*n \ Lm, ?m_i), i.e., we solve

 n

 i = \

 where

 U(?u?i) = yV-l(l, cum(?))f[Y(a) - ?x - ?2 cum(?)].

 Solving this equation is equivalent to minimizing the sum of weighted
 squared selection-bias-corrected residuals

 n

 J2 WrX\??<*) -?x-?i cum(Ai)]2.
 i=\

 Remark. The subject-specific selection bias correction term
 J2m=o I<lm(Lm, ?, a* ; a) dF(fl* | Lm, ?m-\) can be difficult to compute,
 especially for continuous treatment (e.g., the dose of a drug recorded in
 milligrams). In that case, one can obtain an estimated version by sampling.
 Specifically, one replaces the above selection bias correction term by

This content downloaded from 
������������99.88.40.203 on Tue, 25 Jun 2024 22:43:19 +00:00������������ 

All use subject to https://about.jstor.org/terms



 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 171

 o J-1

 *"* -''"'"'"" ^^^ '"''''*

 ^ 1 ^^^ -?'""'"
 o J

 -0.10 -0.06 0.0 0.05 0.10
 a

 Figure 1. ?2 as a function of a (solid line), with 95% confidence intervals (vertical
 inverval between dashed lines).

 J~l Y/j=\ ELo<lm(Lm, ?, a*m.\ a) where the a*mj, j = I, ..., J are, for
 each m, /-independent draws from the conditional distribution f(am \ Lm,
 ?m_i). Again, in an observational study, IV and f(am \ Lm, ?m_x) will
 not be known and will have to be modelled and estimated from the data in

 a preliminary step.
 (iv) The final result of the sensitivity analysis is a graph such as that

 shown in Figure 1. The confidence interval surrounding the point estimate
 ?2 on the graph represents uncertainty due to sampling variability and can
 be computed easily using standard statistical software. Since the functional
 form of qm is not identified, one should report the results of several differ

 ent sensitivity analyses with different functional forms for qm(Im, a, a*m;
 a) and also consider choosing the parameter a to be multidimensional.

 The biggest challenge in conducting a sensitivity analysis is not the
 technical computational details described above. Rather, it is the choice
 of one or more sensible parameterized sensitivity analysis functions qm
 whose meaning can be explained to relevant subject-matter experts with
 sufficient clarity that the experts are able to provide a plausible range
 for the parameter a encoding the magnitude and direction of selection
 bias (i.e., unmeasured confounding). Hard as this challenge may sound,
 I believe it would be a worthwhile exercise if it leads to results of studies

 being summarized by plots such as that given in Figure 1 rather than being
 summarized by the single confidence interval at a = 0, as would be done in
 the absence of a formal sensitivity analysis. This belief of mine is in line
 with the well-known adage that "it is not what you don't know that hurts
 you; it's the things you think you know but don't". Paraphrasing Freedman
 et al. (1984), I believe reporting sensitivity analysis graphs like Figure 1 in
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 172  JAMES M. ROBINS

 scientific papers rather than simply reporting the single confidence interval
 at a = 0 (corresponding to the assumption of no unmeasured confounders)
 will decrease the stock of things we think we know, but don't.

 3.2. Comparison with Other Approaches to Sensitivity Analysis

 We quantified the net confounding on the mean of the outcome Y-a through
 the selection bias function qm without any reference to the unmeasured
 common causes U of treatment and the outcome that are the source

 of this confounding. A large body of previous work, originating with
 Cornfield (1959) on sensitivity analysis in causal inference models with
 time-independent treatments has tried to directly model the effect of these
 unmeasured causes U. In such a sensitivity analysis, one varies the asso
 ciation of U with the outcome Y (within levels of treatment and measured
 confounders) and the association of U with the treatment (within levels
 of measured confounders) (Schlesselman 1978; Rosenbaum and Rubin
 1983; Lin et al. 1998). In contrast, in our approach, we simply model the
 association of the mean of the counterfactual outcome variable with the

 treatment (within levels of measured confounders). The advantage of our
 approach is that (i) there are many fewer sensitivity parameters to vary,
 and (ii) the (essentially impossible) decision as to whether to view U as
 univariate or multivariate, continuous or discrete is done away with. A
 link between the two approaches is that the counterfactual variables can be
 considered the ultimate unmeasured confounder U. This reflects the fact

 that, given the counterfactuals and treatment, other unmeasured covariates
 fail to predict the observed outcome (and thus are superfluous and can be
 dispensed with), since the observed outcome variable is a deterministic
 function of the treatment and the counterfactual outcome.

 In our opinion, the unmeasured confounder U approach should be pre
 ferred to our counterfactual approach only in circumstances, where (i) U
 represents a known confounder (e.g., cigarette smoking) that for logistical
 reasons was not measured in a particular study, and furthermore, (ii) there
 exists reasonable historical and/or biological knowledge about the mag
 nitude of association of U with both the outcome (conditional on treatment
 and measured confounders) and the treatment (conditional on measured
 confounders). In contrast, when U is to represent all possible unmeasured
 factors, we believe that it is substantively easier for subject-matter experts
 to give their opinions about the plausible magnitude of the association of
 the mean of the counterfactual outcome with treatment than about the ques
 tion of whether any unmeasured confounders U are continuous or discrete,
 single or multidimensional, and the associations of such confounders with
 treatment and the outcome.
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 ASSOCIATION, CAUSATION, AND MARGINAL STRUCTURAL MODELS 173

 We have seen that our counterfactual approach leads to extremely
 simple computations that can be carried out with standard software. In
 contrast, as discussed by Lin et al. (1998), there can be formidable com
 putational difficulties associated with the approach based on positing an
 unmeasured covariate U.

 3.3. Alternatives to Sensitivity Analysis

 Competitors to sensitivity analysis as means for summarizing uncertainty
 due to confounding by unmeasured factors about causal effects in obser
 vational studies include formal Bayesian inference and computing bounds
 for the causal effect. Although I am a proponent of computing bounds
 in placebo-controlled randomized trials with all or none non-compliance
 (see Robins 1989), nonetheless, in observational studies the bounds are,
 in general, too wide to be very useful since they always include the null
 hypothesis of no treatment effect.

 I view a Bayesian analysis as complementary to a sensitivity analysis.
 A sensitivity analysis such as that given in Figure 1 accurately reports
 what we can learn from the data in a statement of the form "if this is the

 degree of confounding due to unmeasured factors, then this is what we
 can conclude from the data". If a decision has to be made, we need to go
 further, and a natural direction would be to place a prior distribution on
 the non-identified parameter a (and indeed on the functional form of qm
 as well). Thus, I regard a sensitivity analysis as essential pre-processing
 for a full Bayesian analysis. Mathematical details are described in Section
 11 of Robins et al. (1999), although the discussion there is restricted to
 rather simple settings because of technical problems with implementing
 non-parametric Bayesian procedures.

 In conclusion, IPTW estimation of MSMs when combined with a sens
 itivity analysis is a useful approach to causal inference in longitudinal data.

 However, there are a number of difficulties which I have not mentioned,
 some of which are briefly considered in Appendix 2. They are discussed in
 detail in Robins (1999) and Robins et al. (1999). I hope I have succeeded
 in the task that I set: to describe clearly the job that needs doing and to
 begin to describe some of the tools that I and others have developed to do
 it

 APPENDIX 1: PARAMETRIC LIKELIHOOD-BASED INFERENCE

 In this appendix, we assume that the MSM (5) is correct and the
 strengthened assumption of Section 2.9.2 of no unmeasured confounders
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 is true. Then the likelihood for the observed data is YY?=xf(Oi\ ?, p, a),
 where

 (ALI) f(0;?,p,a) = Xd?,p)X2(a),
 IS

 ?i(?8,/*)= ? - f f f(YA;?,Pl)fl J J J k=o

 xf(Lk\Lk-i,?k_x,Y?-p2) f] dF
 {Y?J??}

 K

 X2(a) = Y\f(Ak \Lk,?k_{;a),
 k=0

 p2 is an unknown parameter indexing the unknown density f(Lk\Lk-\,
 ?k-u Yj), p\ is an unknown parameter that together with the parameter
 ? of (5) indexes the unknown joint density of the counterfactuals {Y?; ? G
 ?], p = (p\, pi), and the parameter a indexes the densities f(Ak \ Lk,
 A?_i). In an observational study a will be unknown, but in a sequential
 randomized trial a will be known since the randomization probabilities
 f(Ak | Lk, ?k_\) are known by design.

 To perform fully parametric likelihood-based likelihood inference on ?,
 we specify parametric models f(Y^; ?, p\) and f(Lk \ Lk_\, ?k-\, Y^\
 pi) with p a finite dimensional parameter. The factorization (ALI) im
 plies that the maximum likelihood estimator of (?, p) is the same whether
 f(Ak | Lk, ?k-\) is completely unknown, is completely known (as in a
 sequential randomized trial), or follows a parametric model f(Ak | Lk,
 ?k-\', a) depending on an unknown parameter a (provided the parameters
 a and (?, p) are considered variation independent). From a Bayesian per
 spective, the factorization (ALI) implies that, if a and (?, p) are a priori
 independent, then they will be a posteriori independent and the posterior
 distribution for ? will be the same whether f(Ak | Lk, A?_i) is completely
 unknown, completely known, or follows a parametric model. Thus, for the
 purposes of likelihood-based frequentist inference or Bayesian inference
 (with independent priors) concerning ?, ?\(?, p) is often referred to as the
 likelihood for (?, p) and X2(a) is referred to as the ancillary for the ? part
 of the likelihood. If the models f(Y^; ?, p\) and f(Lk \ Lk_\, ?k_\, Y^,
 pi) are correctly specified, the MLE of ? will be more efficient (i.e., have
 smaller variance) than any IPTW estimator. Unfortunately, if either model
 is misspecified, both the MLE and the posterior mean of ? will generally
 be inconsistent (even if the treatment process is statistically exogenous
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 and completely known). Since, when K = 300 and Ak is dichotomous, the
 dimension Y^ is 2300, specification of nearly correct parametric models
 f(Y?\ ?, px) and f(Lk | L?_,, ?k^u Y?\ p2) appears to be an essentially
 hopeless task.

 Remark. In addition to the problem of model misspecification, in or
 der to evaluate the likelihood function (ALI), it is necessary to compute
 2300 ? 1 dimensional integrals, since one must integrate out all of the
 unobserved random variables F?. However, in contrast to the intractable
 problem of model misspecification, the need to calculate high dimensional
 integrals can be overcome, if one assumes a model under which each Y-a
 is a deterministic function of a and an one error random variable (Robins
 and Wasserman 1999), which Robins (1997) refers to as a rank preserving
 structural distribution model (RPSDM) with no local treatment interac
 tion. The joint distribution of the Y-a is then massively degenerate and the
 integrals in the likelihood function (A 1.1) are eliminated. However, the
 assumptions underlying a RPSDM are usually biologically implausible.

 In contrast, our IPTW estimator of ? is easy to compute and is guar
 anteed to be consistent, if f(Ak \ Lk, ??-i) is known (as in a sequential
 randomized trial), or if the model f(Ak \ Lk, ?k-\\ a) is correctly spe
 cified. It follows that the estimation of a MSM model in a sequential
 randomized trial is a leading example of an estimation problem that is
 essentially intractable from a Bayesian or likelihoodist point of view, but
 for which there exists simple consistent weighted estimators. Robins and
 Ritov (1997) and Robins et al. (2000) provide an in depth discussion of
 this issue and its implications for the likelihood principle. In the technical
 parlance of statistical literature, our IPTW estimator is a semiparametric
 estimator rather than a likelihood-based estimator.

 I would hope this example would lead the philosophy community to
 question the emphasis on Bayesian and likelihood-based approaches to
 inference that has been passed on from the statistical community. When,
 as with MSMs, a likelihood function becomes too complicated and high
 dimensional, there is no way to directly extract accurate information from
 it, even though there are other methods, such as IPTW estimation, which
 allow one to accurately extract the information on a parameter ? of interest
 when the ancillary part of the likelihood X2(a) is either known or can be
 accurately modelled.

 Remark. It should be pointed out that, in an observational study, in
 which there are: (i) a large number of treatment periods K; (ii) subjects
 go on and off treatment frequently; and (iii) treatment affects the covari
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 ates Lk, then, even if in truth (but unknown to the data analyst) treatment
 is statistically exogenous, the analyst can obtain estimated weights IV~l
 that differ significantly from one due to misspecification of the model
 f(Ak | Lk, Ak-\\ a). In that case, the analyst will falsely conclude that
 treatment is non-exogenous; furthermore, unbeknownst to the analyst, the

 OLS estimator will be consistent for the parameter ?2 of the MSM, while
 the IPTW estimator will be inconsistent due to the aforementioned model

 misspecification.

 APPENDIX 2: DIFFICULTIES WITH IPTW ESTIMATION OF MSMS

 Although IPTW estimation of MSMs is a useful approach to causal infer
 ence from longitudinal data, there are a number of major difficulties which
 I have not mentioned. They are discussed in detail in Robins (Robins 1999;
 Robins et al. 1999). Here, I briefly touch on a few, mainly to provide a
 sense of what is at issue.

 (i) A dynamic treatment regime g is a treatment regime wherein a
 subject's dose of treatment on day k depends on the evolution of their

 measured time-dependent covariates Lk through day k. For example, treat
 ment regime "take AZT only when your white blood count has exceeded
 600 for the past two weeks" is a dynamic regime. Heretofore, we have
 only considered the counterfactuals Y? associated with nondynamic re
 gime a. Formally, a treatmentregime g is a collection of K + 1 functions
 g ? (go, ..., gK) where gk:Lk -> <A>k maps the support Lk of Lk to the
 support Ak of Ak. Let Yg be the counterfactual outcome of a subject when
 following regime g. If, for each k, gk(lk) is a constant ak not depending
 on lk, we say that regime g is non-dynamic and write Yg as Y?. Under
 consistency and positivity assumptions, E(Yg) is given by the RHS of (12),
 with ?k-x = g(h-\) = (go(?o), , gk-\(L-\)) and ?k = g(Ik) being the
 treatment histories prescribed by regime g.

 The optimal treatment regime may well be dynamic. For example, sup
 pose our goal is to find the regime that minimizes E(Yg). If, for example,
 taking AZT is beneficial when one's white count is greater than 600 but is
 harmful when one's white count is less than 600, the optimal regime will
 be dynamic. In practice, optimal regimes for medical treatments are almost
 always dynamic, since it is important to stop treatment when one becomes
 toxic. For example, low white blood counts are a sign of toxicity to AZT,
 and continuing AZT will depress a subject's white count further, leading
 to infection and death.

 Unfortunately, one cannot, in general, use IPTW estimators of a MSM

 to estimate E(Yg) for dynamic regimes. Robins (1997, 1999), Robins et
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 al. (1999) described different approaches based on MSMs, structural nes
 ted models (SNMs), and the ^-computation algorithm to estimate E(Yg).
 These methods are beyond the scope of this paper.

 (ii) There are substantive settings, such as studies of the effect of an
 occupational exposure on health in a cohort of factory workers, in which
 methods based on MSMs cannot be used. This reflects the fact that if our

 positivity assumption that f(?k^\,Ik) > 0 implies f(ak | Jk, ak_\) > 0
 is only true for a single value of ak, then inference based on IPTW es
 timation of MSMs is not possible. In an occupational study, suppose Lk
 is employment status (i.e., whether a subject is on or off work at time k),
 and Ak is the dose of a potentially toxic exposure such as vinyl chloride.
 Since subjects off work, i.e., Lk ? 0, only receive exposure level ak - 0,
 our positivity assumption is only true for ak = 0 and for no other exposure
 level, thus precluding the use of our IPTW estimation methods. In such
 a setting, exposure effects can still be estimated using g-estimation of
 structural nested models (Robins 1997).

 (iii) If F is a non-negative random variable, the sensitivity analysis
 method based on (14) may fail since it can lead to negative values for
 E[Y?]. Hence, for non-negative Y, one should base a sensitivity analysis
 on

 qm(lm, d, a*) = In E[Y? | lm, ?m-\, am]

 - In E[Y? | ?m,?m^,a*J.

 where In is the natural logarithm. Inference precedes as above except that

 now Y (a) = Y Y\*=0 Qm(a) where Qm(a) = exp[-q(Lm, ?, 1 - Am\
 <*)]{! ~ f(Am | Lm, Am_i)} where Am is a dichotomous (0, 1) variable
 and Qm(a) = f exp{-q(Lm, ?, am\ a)}dF(am \ Lm, ?m-\) more gener
 ally. Even this approach can fail when F is a dichotomous (0, 1) random
 variable, since it can lead to values for the E[Y?] that exceed one. The point
 is that although, under the assumption of no unmeasured confounders, we
 can estimate for a dichotomous outcome the parameters of a logistic MSM,
 such as E[Y?] = {1 + exp[-)8i - i?2cum(?)]}"1 by IPTW weighed lo
 gistic regression (Robins 1999; Robins et al. 1999), there is no convenient
 method of sensitivity analysis based on replacing a subject's observed Y
 by a selection-bias corrected-version Y (a) that is guaranteed to respect the
 fact that E[Y?] cannot exceed one.

 NOTE

 * David Freedman provided helpful comments. Support was provided through NIH Grants
 RO?-A 132475 and R01-CA74112.
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