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Introduction to Bootstrap

Question: How to estimate the bias and variance of a statistics of
interest?

Prior works:

Quenouille-Tukey jackknife (1949,1958)

The infinitesimal jackknife (Jaeckel, L. (1972))
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Description of the Jackknife

Suppose θ is some parameter of interest, and θ̂ = θ̂(X1, . . . , Xn) is our
estimate of θ based on samples.

Jackknife is a resampling technique for estimating the bias and
variance.

Procedure: for each i from 1 to n, compute θ̂(−i), the estimate of θ
excluding the i-th observation.

Bias and Variance Estimation:

Bias: Biasjack(θ̂) = (n− 1)
(
θ̂jack − θ̂

)
Variance: Varjack(θ̂) =

n−1
n

∑n
i=1

(
θ̂(−i) − θ̂jack

)2

where θ̂jack = 1
n

∑n
i=1 θ̂(−i), the average of all jackknife estimates.
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Limitations of the Jackknife

The Jackknife may not perform well in certain scenarios.

It lacks theoretical basis.

Ziang Song Bootstrap Methods: Another Look at the Jackknife March 19, 2024 4 / 29



Introduction to Bootstrap

Bootstrap is a resampling technique for estimating the distribution of a
statistic.

Basic Idea: Use the empirical distribution to approximate the true
distribution.

Figure: Bootstrap process (Efron, B., & Tibshirani, R. J. (1994))
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Bootstrap Methods - Overview

Notations:

X = (X1, X2, . . . , Xn): Original sample.

x = (x1, x2, . . . , xn): Observed values.

F̂ : Empirical distribution based on the observed sample.

R(X, F ): Statistic of interest as a function of X and F .

R∗: Bootstrap analogue of R.

Methodology:

1 Construct the empirical distribution F̂ by placing mass 1
n at each

data point x1, x2, . . . , xn.

2 Draw bootstrap samples X∗ = (X∗
1 , X

∗
2 , . . . , X

∗
n) from F̂ .

3 Approximate the sampling distribution of R(X, F ) by the bootstrap
distribution of R∗ = R(X∗, F̂ ).
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Bootstrap Resampling Simplex

Simplex for n = 3. The solid points indicates the support points of the
bootstrap distribution while the open circles are the jackknife points.
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A simple example

Consider a probability distribution F putting all of its mass at zero or
one, and let θ(F ) = ProbF (X = 1). The statistic of interest is

R(X, F ) = X̄ − θ(F ), X̄ =
1

n

n∑
i=1

Xi.

Having observed X = x, the bootstrap sample X∗ has each
component X∗

i ∼iid Bernoulli(x̄).

R∗ = R(X∗, F̂ ) = X̄∗ − x̄ has mean and variance

E∗R
∗ = 0, Var∗R

∗ =
x̄(1− x̄)

n
.

This suggest X̄ is unbiased for θ, with variance approximately equal
to x̄(1− x̄)/n.
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Calculation of the bootstrap distribution

Method 1. Direct theoretical calculation, as in the last example.

Method 2. Monte Carlo approximation.

Method 3. Taylor series expansion methods.
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Choices of F̂

Suppose we wish to estimate the median of F using the sample median.
Let θ(F ) indicate the median of F , and let t(X) be the sample median.
Assume n = 2m− 1. We can use different F̂ :

Empirical distribution of x1, · · · , xn.
If we know that F is symmetric, we can replace F̂ by

F̂SYM : probability mass
1

2n− 1
at x(1), · · · , x(n),

2x(m) − x(1), · · · , 2x(m) − x(n)

Smoothed Bootstrap: take X∗
i = x̄+ c(xIi − x̄+ σ̂Zi) where

Ii ∼iid Unif([n]) and Zi are sampled from some fixed distribution.
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Choices of F̂
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Error rate estimation in discriminant analysis

Consider a standard linear discriminant analysis problem. The data consists
of independent random samples from two unknown distributions F and G.

Xi = xi ∼ F, i = 1, 2, · · · ,m
Yj = yj ∼ G, j = 1, 2, · · · , n.

Define the region B by

B = {z : (ȳ − x̄)′S−1(z − x̄+ ȳ

2
) > logm/n},

where S = (
∑

(xi − x̄)′(xi − x̄) + (yi − ȳ)′(yi − ȳ))/(m+ n).

Define êrrorF = #{i : xi ∈ B}/m, errorF = ProbF (X ∈ B).

We will be interested in R((X,Y), (F,G)) = errorF − êrrorF .
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2
) > logm/n},

where S = (
∑

(xi − x̄)′(xi − x̄) + (yi − ȳ)′(yi − ȳ))/(m+ n).
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Define êrrorF = #{i : xi ∈ B}/m, errorF = ProbF (X ∈ B).

We will be interested in R((X,Y), (F,G)) = errorF − êrrorF .
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Error rate estimation in discriminant analysis

The brute force application of the bootstrap via simulation:
bootstrap random samples

X∗
i = x∗i ∼ F̂ , Y ∗

j = y∗j ∼ Ĝ.

The bootstrap random variable is

R∗ = R((X∗,Y∗), (F̂ , Ĝ)).

Repeated independent generation yields a sequence of independent
realizations of R∗, say R∗(1), R∗(2), · · · , R∗(N). Approximate the
expectation/variance of R by sample mean/variance of R∗(t).
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Error rate estimation in discriminant analysis
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Relationship with the jackknife

The Jackknife is shown to be a linear approximation method for the
bootstrap. To be precise, approximating the bootstrap distribution by
Taylor series expansion is the same as Jaeckel’s infinitesimal jackknife.

Define P ∗
i = #{i : X∗

i = xi}, and

P∗ = (P ∗
1 , · · · , P ∗

n).

Write R(P∗) = R(X∗, F̂ ).

We have

R(P∗) ≈ R(e/n) + (P∗ − e/n)U+
1

2
(P∗ − e/n)V(P∗ − e/n)′.
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Relationship with the jackknife

Here, we used homogeneous extension R(P∗) = R(P∗/
∑n

i=1 P
∗
i ).

We
have

E∗P
∗ = e/n, Cov∗P

∗ = I/n2 − e′e/n3.

eU = 0, eV = −nU′, eVe′ = 0.

This gives

E∗R(P∗) ≈ R(e/n) +
1

2n2
tr(V),

Var∗R(P∗) =
n∑

i=1

U2
i /n

2.

In this case, consider R(X∗, F̂ ) = θ(F̂ ∗)− θ(F̂ ). (R(e/n) = 0)
E∗[θ(F̂

∗)− θ(F̂ )] ≈ 1
2n2 tr(V) suggests EF (θ(F̂ )− θ(F )) ≈ 1

2n2 tr(V).

Similarly, VarF (θ(F̂ )) ≈
∑n

i=1 U
2
i /n

2.
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Relationship with the jackknife

The approximations

EF (θ(F̂ )− θ(F )) ≈ 1

2n2
tr(V)

VarF (θ(F̂ )) ≈
n∑

i=1

U2
i /n

2

exactly agree with those given by Jaeckel’s infinitesimal jackknife.

The ordinary jackknife replaces the derivatives with finite differences.
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Jackknife in ‘unbalanced’ situation

Question: In the two-sample problem, should we leave out one xi at a
time, then one yj at a time, or should we leave out all mn pairs (xi, yj) at
a time?

In this paper, Brad answered this question by using Taylor series expansion
on the bootstrap distribution. He showed that in two-sample situation, we
should leave out one xi at a time, then one yj at a time.
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Residual Bootstrap

Consider a general regression model Xi = gi(β) + ϵi.

In the linear model case, where gi(β) = c′iβ (with ci being a vector of
covariates). Estimation β̂ can be obtained by least squares.

By resampling residuals ϵ∗i from F , new bootstrap samples
X∗

i = gi(β̂) + ϵ∗i can be generated, leading to bootstrap estimates β̂∗.

Bootstrap replications β̂∗
1 , β̂

∗
2 , . . . , β̂

∗
N allow estimation of the

bootstrap distribution of the estimator, providing insight into its
variability and bias.
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Residual Bootstrap

For the linear model,

if C is the design matrix and G = C ′C (assumed nonsingular), the
least squares estimator β̂ = G−1C ′X has mean β and covariance
σ2
ϵG

−1

The bootstrap values ϵ∗i are independent with mean zero and variance
σ̂2 =

∑n
i=1(xi − gi(β̂))

2/n. This implies that β̂∗ = G−1C ′XX∗ has
bootstrap mean and variance

E∗β̂
∗ = β̂, Cov∗β̂

∗ = σ̂2G−1.

This approach aligns with traditional theory, offering a practical tool
for assessing estimator performance in finite samples.

On the contrary, covariance obtained by the jackknife methods looks
very different. Covβ̂ ≈ G−1(

∑n
i=1 c

′
iciϵ̂

2
i )G

−1.
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Theory behind Bootstrap

Assume the sample sapce is a finite set. Any distribution on F can be
represented as a vector P. Then the empirical distribution and the
bootstrap distribution satisfies

P̂|P ∼ Multinomial(n,P), P̂∗|P̂ ∼ Multinomial(n, P̂).

By asymptotics,

√
n(P̂−P)|P ≈ N (0,ΣP),

√
n(P̂∗ − P̂)|P̂ ≈ N (0,ΣP̂),P ≈ P̂.

So √
n(P̂∗ − P̂)|P̂ ≈

√
n(P̂−P)|P.
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Conclusions

Bootstrap is a simple but powerful tool in estimating bias and
variance of the statistics of interest.

The Jackknife methods can be viewed as first order approximation of
Bootstrap.

Statisticians need to feel comfortable with simulations.

Bootstrap has earned its place as one of the most influential
developments in statistical methodology.

Its versatility and robustness have made it indispensable in a wide
range of fields, including but not limited to finance, biology,
engineering, and social sciences. Over 70k citations (20+50). In
2018, Brad was awarded the “International Prize in Statistics” in
recognition of the bootstrap.

Ziang Song Bootstrap Methods: Another Look at the Jackknife March 19, 2024 22 / 29



Prehistory of bootstrap

John Hubback, an Indian Civil Servant, introduced a version of the block
bootstrap for spatial data. (1927)

P.C. Mahalanobism, the eminent Indian statistician, was inspired by
Hubback’s work and used Hubback’s spatial sampling schemes explicitly
for variance estimation. (1930s)
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Prehistory of bootstrap

Julian Simon had published a number of resampling examples, including a
bootstrap example, in his 1969 book Basic Research Methods in Social
Science.

“Recently I have concluded that a bootstrap-type test has better
theoretical justification than a permutation test in this case, although the
two reach almost identical results with a sample this large” (Simon 1993)
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Contribution of Brad Efron

Efron’s contributions were of course far-reaching. They vaulted
forward from earlier ideas, of people such as Hubback, Mahalanobis,
Hartigan and Simon, creating a fully fledged methodology that is now
applied to analyse data on virtually all human beings.

Efron combined the power of Monte Carlo approximation with an
exceptionally broad view of the sort problem that bootstrap methods
might solve.
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Limitations

Bootstrap method can be computationally intensive because we need
to calculate statistics of interest for all bootstrap random samples.

It is an approximate method. For small size of samples, the result
may not be reliable.

When the original dataset is small or contains outliers. The accuracy
of the bootstrap estimates depends on the adequacy of the original
dataset for representing the population.

The bootstrap method assumes that observations in the original
dataset are independent and identically distributed (IID). If this
assumption is violated, such as in the case of time-series data or
spatial data with autocorrelation, the bootstrap estimates may be
biased or unreliable.
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Further Developments of the Bootstrap Method

Bayesian bootstrap

The parametric bootstrap

Bootstrap confidence intervals

Bootstrap for time series

· · · · · ·
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Origin of the Name

Jackknife: ‘it could work on anything.’

Bootstrap: ‘Pull yourself up by your bootstraps.’

The Surprising Adventures of Baron Munchausen, where the main
character pulls himself our of a swamp by his bootstraps/hair.
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Other proposed names

Swiss Army Knife, Meat Axe, Swan-Dive, Jack-Rabbi, and Shotgun

“It can blow the head off any problem if the statistician can stand the
resulting mess.”
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