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 The Annals of Statistics
 1979, Vol. 7, No. 1, 1-26

 THE 1977 RIETZ LECTURE

 BOOTSTRAP METHODS: ANOTHER LOOK AT THE JACKKNIFE

 BY B. EFRON

 Stanford University

 We discuss the following problem: given a random sample X=

 (X1, X2,. . ., Xn) from an unknown probability distribution F, estimate the
 sampling distribution of some prespecified random variable R(X, F), on the
 basis of the observed data x. (Standard jackknife theory givses an approximate
 mean and variance in the case R(X, F) = 0(F) - 0(F), 0 some parameter of
 interest.) A general method, called the "bootstrap," is introduced, and shown to

 work satisfactorily on a variety of estimation problems. The jackknife is shown
 to be a linear approximation method for the bootstrap. The exposition proceeds
 by a series of examples: variance of the sample median, error rates in a linear
 discriminant analysis, ratio estimation, estimating regression parameters, etc.

 1. Introduction. The Quenouille-Tukey jackknife is an intriguing nonparamet-

 ric method for estimating the bias and variance of a statistic of interest, and also

 for testing the null hypothesis that the distribution of a statistic is centered at some

 prespecified point. Miller [14] gives an excellent review of the subject.

 This article attempts to explain the jackknife in terms of a more primitive

 method, named the "bootstrap" for reasons which will become obvious. In princi-

 ple, bootstrap methods are more widely applicable than the jackknife, and also

 more dependable. In Section 3, for example, the bootstrap is shown to (asymptoti-

 cally) correctly estimate the variance of the sample median, a case where the

 jackknife is known to fail. Section 4 shows the bootstrap doing well at estimating

 the error rates in a linear discrimination problem, outperforming "cross-valida-

 tion," another nonparametric estimation method.
 We will show that the jackknife can be thought of as a linear expansion method

 (i.e., a "delta method") for approximating the bootstrap. This helps clarify the

 theoretical basis of the jackknife, and suggests improvements and variations likely
 to be successful in various special situations. Section 3, for example, discusses

 jackknifing (or bootstrapping) when one is willing to assume symmetry or smooth-

 ness of the underlying probability distribution. This point reappears more emphati-

 cally in Section 7, which discusses bootstrap and jackknife methods for regression
 models.

 The paper proceeds by a series of examples, with little offered in the way of

 general theory. Most of the examples concern estimation problems, except for
 Remark F of Section 8, which discusses Tukey's original idea for t-testing using the
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 2 B. EFRON

 jackknife. The bootstrap results on this point are mixed (and won't be reported
 here), offering only slight encouragement for the usual jackknife t tests.

 John Hartigan, in an important series of papers [5, 6, 71, has explored ideas
 closely related to what is called bootstrap "Method 2" in the next section, see
 Remark I of Section 8. Maritz and Jarrett [13] have independently used bootstrap
 "Method 1" for estimating the variance of the sample median, deriving equation
 (3.4) of this paper and applying it to the variance calculation. Bootstrap "Method
 3," the connection to the jackknife via linear expansions, relates closely to Jaeckel's

 work on the infinitesimal jackknife [10]. If we work in a parametric framework, this
 approach to the bootstrap gives Fisher's information bound for the asymptotic

 variance of the maximum likelihood estimator, see Remark K of Section 8.

 2. Bootstrap methods. We discuss first the one-samiple situation in which a
 random sample of size n is observed from a completely unspecified probability
 distribution F,

 (2.1) Xi = xi Xi -indF i = 1, 29 ... ., n.

 In all of our examples F will be a distribution on either the real line or the plane,

 but that plays no role in the theory. We let X = (X1, X2, . . ., XJ) and x-
 (x, X2, ... , x,,) denote the random sample and its observed realization, respec-
 tively.

 The problem we wish to solve is the following. Given a specified random
 variable R(X, F), possibly depending on both X and the unknown distribution F,

 estimate the sampling distribution of R on the basis of the observed data x.
 Traditional jackknife theory focuses on two particular choices of R. Let 9(F) be

 some parameter of interest such as the mean, correlation, or standard deviation of
 F, and t(X) be an estimator of 9(F), such as the sample mean, sample correlation,
 or a multiple of the sample range. Then the sampling distribution of

 (2.2) R(X, F) = t(X) - @(F),

 or more exactly its mean (the bias of t) and variance, is estimated using the

 standard jackknife theory,,as described in Section 5. The bias and variance
 estimates say Bias (t) and Var (t), are cleverly constructed functions of X obtained

 by recomputing t(.) n times, each time removing one component of X from
 consideration. The second traditional choice of R is

 (2.3) R(X, F) = t(X) - Bias (t) - 9(F)
 (Var (t))2

 Tukey's.original suggestion was to treat (2.3) as having a standard Student's t
 distribution with n - 1 degrees of freedom. (See Remark F, Section 8.) Random
 variables (2.2), (2.3) play no special role in the bootstrap theory, and, as a matter of
 fact, some of our examples concern other choices of R.
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 BOOTSTRAP METHODS 3

 The bootstrap method for the one-sample problem is extremely simple, at least in
 principle:

 1. Construct the sample probability distribution F, putting mass 1/n at each

 point xl, X2, X3,.* , Xn.
 2. With F fixed, draw a random sample of size n from F, say

 (2.4) F i 1 2, * *, n.

 Call this the bootstrap sample, X* = (X*, X2* , X*), x* = (x 2, *,* ,
 Notice that we are not getting a permutation distribution since the values of X* are

 selected with replacement from the set {xl, x2, . . , x"}. As a point of comparison,
 the ordinary jackknife can be thought of as drawing samples of size n - 1 without
 replacement.

 3. Approximate the sampling distribution of R(X, F) by the bootstrap distribution
 of

 (2.5) R* = R(X*, F)

 i.e., the distribution of R* induced by the random mechanism (2.4), with F held
 fixed at its observed value.

 The point is that the distribution of R*, which in theory can be calculated
 exactly once the data x is observed, equals the desired distribution of R if F= F.

 Any nonparametric estimator of R's distribution, i.e., one that does a reasonably

 good estimation job without prior restrictions on the form of F, must give close to

 the right answer when F = F, since F is a central point amongst the class of likely
 F's, having observed X = x. Making the answer exactly right for F = F is Fisher

 consistency applied to our particular estimation problem.

 Just how well the distribution of R* approximates that of R depends upon the

 form of R. For example, R(X, F) = t(X) might be expected to bootstrap less

 successfully than R(X, F) = [t(X) - EFt]/(VarFt)2. This is an important question,
 related to the concept of pivotal quantities, Barnard [2], but is discussed only
 briefly here, in Section 8. Mostly we will be content to let the varying degrees of
 success of the examples speak for themselves.

 As the simplest possible example of the bootstrap method, consider a probability
 distribution F putting all of its mass at zero or one, and let the parameter of
 interest be 9(F) = ProbF{X = 1}. The most obvious random variable of interest is

 (2.6) R(X, F) = X-9(F) X = (X% 7Xi/n).

 Having observed X = x, the bootstrap sample X* = (X1*, X2*, .. . , X*) has each
 component independently equal to one with probability x5 = 9(F), zero with
 probability 1 - . Standard binomial results show that

 (2.7) R* =R(X*, 1) = -
 has mean and variance

 (2.8) E*(X* - x) = 0, Var*(X* - x) = x(l - x)/n.
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 4 B. EFRON

 (Notations such as "E*," "Var*," "Prob*," etc. indicate probability calculations
 relating to the bootstrap distribution of X*, with x and F fixed.) The implication

 that X is unbiased for 9, with variance approximately equal to x(1 - x)/n, is

 universally familiar.

 As a second example, consider estimating 9(F) = VarFX, the variance of an

 arbitrary distribution on the real line, using the estimator t(X) = 2n=I (Xi -
 Y)2/(n - 1). Perhaps we wish to know the sampling distribution of

 (2.9) R(X, F) = t(X) - 9(F).

 Let jik(F) indicate the kth central moment of F, tLk(F) = EF(X - EFX)k, and
 I-k = _k(F), the kth central moment of F. Standard sampling theory results, as in
 Cramer [3], Section 27.4, show that

 = R(X*, F) = t(X*) -_ (F)
 has

 (2.10) E*R* = 0, Var*R* - - ((n-3)/ (nR-l 2
 n

 The approximation VarFt(X) Var*R* is (almost) the jackknife estimate for
 VarF t.

 The difficult part of the bootstrap procedure is the actual calculation of the

 bootstrap distribution. Three methods of calculation are possible:

 Method 1. Direct theoretical calculation, as in the two examples above and the

 example of the next section.

 Method 2. Monte Carlo approximation to the bootstrap distribution. Repeated

 realizations of X* are generated by taking random samples of size n from F, say

 x x* , x*2 . x*N, and the histogram of the corresponding values

 R(x*l, F), R(x*2, F), . .. , R(x* , F) is taken as an approximation to the actual

 bootstrap distribution. This approach is illustrated in Sections 3, 4 and 8.

 Method 3. Taylor series expansion methods can be used to obtain the ap-
 proximate mean and variance of the bootstrap distribution of R*. This turns out to

 be the same as using some form of the jackknife, as shown in Section 5.
 In Section 4 we consider a two sample problem where the data consists of a

 random sample X = (X1, X2, . . ., X) from F and an independent random sample

 Y= (Y1, Y2, . . ., YJ) from G, F and G arbitrary probability distributions on a
 given space. In order to estimate the sampling distribution of a random variable
 R((X, Y), (F, G)), having observed X = x, Y = y, the one-sample bootstrap method

 can be extended in the obvious way: F and G, the sample probability distributions

 corresponding to F and G, are constructed; bootstrap samples Xi* F, i=
 1, 2, ... , m, j G, j = 1, 2, . .. , n, are independently drawn; and finally the
 bootstrap distribution of R* = R((X*, Y*), (F, G)) is calculated, for use as an
 approximation to the actual distribution of R. The calculation of the bootstrap

 distribution proceeds by any of the three methods listed above. (The third method
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 BOOTSTRAP METHODS 5

 makes clear the correct analogue of the jackknife procedure for nonsymmetric

 situations, such as the two sample problem; see the remarks of Section 6.)

 So far we have only used nonparametric maximum likelihood estimators, F and

 (F, G), to begin the bootstrap procedure. This isn't crucial, and as the examples of

 Sections 3 and 7 show, it is sometimes more convenient to use other estimates of

 the underlying distributions.

 3. Estimating the median. Suppose we are in the one-sample situation (2.1),
 with F a distribution on the real line, and we wish to estimate the median of F

 using the sample median. Let 9(F) indicate the median of F, and let t(X) be the
 sample median,

 (3.1) t(X) = X(m)

 where X(l) < X(2) 5 <X(n) is the order statistic, and we have assumed an odd
 sample size n = 2m - 1 for convenience. Once again we take R(X, F) = t(X) -
 9(F), and hope to say something about the sampling distribution of R on the basis
 of the observed random sample.

 Having observed X = x, we construct the bootstrap sample X* = x* as in (2.4).
 Let

 (3.2) Ni* = Xi* = Xi)
 the number of times xi is selected in the bootstrap sampling procedure. The vector
 N* = (N*, N2*, , Nn*) has a multinomial distribution with expectation one in
 each of the n cells.

 Denote the observed order statistic X(1) < X(2) < X(3) < * < x?, Xn), and the
 corresponding N* values N(*a), N*),* * * , N(*n). (Ties xi = xi can be broken by
 assigning the lower value of i, i' to the lower position in the order statistic.) The
 bootstrap value of R is

 (3.3) R* = R(X*, F) = X(m)- X(m).
 We notice that for any integer value 1, 1 < 1 < n,

 (3.4) Prob* {X*(m) > X(l)} = Prob* {N*(l) + N(2)* + +N(.)* < m -1)

 = Prob{Binomial(n,-) m - 1)

 EJ ? n n)
 Therefore

 (3.5) Prob* {R* = x(/) - x(m)} = Prob Binomial(n, / ;1) < m -1)

 -Prob Binomial(n,-) m-1 ),

 a result derived independently by Maritz and Jarrett [13].
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 6 B. EFRON

 The case n = 13 (m = 7) gives the following bootstrap distribution for R*:

 (3.6) 1= 2or 12 3or 11 4or 10 5or9 6or8 7

 (3.5) = .0015 .0142 .0550 .1242 .1936 .2230

 For any given random sample of size 13 we can compute

 (3.7) E*(R*)2 = - 13 1[X( -X(7- ]2 Prob*{ R* = x(l)-

 and use this number as an estimate of EFR2 = EF[t(X) - 9(F)]2, the expected
 squared error of estimation for the sample median. Standard asymptotic theory,

 applied to the case where F has a bounded continuous density f(x), shows that as

 the sample size n goes to infinity, the quantity nE*(R*)2 approaches 1/4f2(8),

 where f(9) is the density evaluated at the median 0(F). This is the correct
 asymptotic value, see Kendall and Stuart [11], page 237. The standard jackknife

 applied to the sample median gives a variance estimate which is not even asymptot-
 ically consistent (Miller [14], page 8, is incorrect on this point): n Var (R)

 (1 /4f2(O ))[X22/2]2. The random variable [X2 /2]2 has mean 2 and variance 20.
 Suppose we happened to know that the probability distribution F was symmet-

 ric. In that case we could replace F by the symmetric probability distribution
 obtained from F by reflection about the median,

 A I at x ... and1
 (3.8) FSYM: probability mass 2n1 at I 1) X(2), ...,x() and

 2x(m) - X(l), . .. * 2x(m) X(n).

 This is not the nonparametric maximum likelihood estimator for F, but has similar

 asymptotic properties, see Hinkley [8]. Let z(l) < Z(2) < . . . < Z(2n- ) be the
 ordered values appearing in the distribution of FsyM. The bootstrap procedure start-
 ing from FSYM gives

 (3.9) Prob*{R* = z(l) - x(m)} = Prob{Binomial(n, 2n 1) < m -I}

 -Prob{Binomial(n, 2 _ 1) < m -

 by the same argument leading to (3.5). For n = 13 the bootstrap probabilities (3.9)
 equal

 1= 4or22 5or21 6or20 7or 19 8or 18

 (3.10) (3.9) = .0016 .0051 .0125 .0245 .0414

 1 = 9 or 17 10 or 16 11 or 15 12 or 14 13

 (3.9) = .0614 .0820 .1002 .1125 .1170'

 The corresponding estimate of EFR2 would be X, -X(7)f Prob*{R* = Z(

 X(7)1 .
 Usually we would not be willing to assume F symmetric in a nonparametric

 estimation situation. However in dealing with continuous variables we might be
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 BOOTSTRAP METHODS 7

 willing to attribute a moderate amount of smoothness to F. This can be incorpo-

 rated into the bootstrap procedure at step (2.4). Instead of choosing each Xi*
 randomly from the set {xI, X2,... , xj}, we can take

 (3.11) Xi* = X +cExI,-Y +UziJ
 where the Ii are chosen independently and randomly from the set { 1, 2, . n. ,
 and the Zi are a random sample from some fixed distribution having mean 0 and

 variance 4, for example the uniform distribution on [- 2, 4], which has 4z=
 1/12. The most obvious choice is a normal distribution for the Zi, but this would
 be self-serving in the Monte Carlo experiment which follows, where the Xi
 themselves are normally distributed. The quantities xE, a, and c appearing in (3.11)

 are the sample mean, sample standard deviation (= ( i2), and [1 + 4I , respec-

 tively, so that Xi* has mean x and variance 2 under the bootstrap sampling
 procedure. In using (3.11) in place of (2.4), we are replacing F with a smoothed

 "window" estimator, having the same mean and variance as F.

 A small Monte Carlo experiment was run to compare the various bootstrap

 methods suggested above. Instead of comparing the squared error of the sample
 median, the quantity bootstrapped was

 (3.12) R(X, F) = flt(X) - 9(F)l
 a(F)

 the absolute error of the sample median relative to the population standard
 deviation. (This quantity is more stable numerically, because the absolute value is
 less sensitive than the square and also because R* = It(X*) - 9(F)I/6 is scale
 invariant, which eliminates the component of variation due to a-differing from

 a(F). The stability of (3.12) greatly increased the effectiveness of the Monte Carlo
 trial.)

 The Monte Carlo experiment was run with n = 13, Xi -ind 4(O, 1), =
 1, 2, . .. , n. In this situation the true expectation of R is

 (3.13) EFR = 0.95.

 The first two columns of Table 1 show EFR* for each trial, using the bootstrap
 probabilities (3.6), and then (3.10) for the symmetrized version. It is not possible to

 theoretically calculate E* R* for the smoothed bootstrap (3.11), so these entries of
 Table 1 were obtained by a secondary Monte Carlo simulation, as described in

 "Method 2" of Section 2. A total of N = 50 replications x*J were generated for
 each trial. This means that the values in the table are only unbiased estimates of

 the actual bootstrap expectations E*R* (which could be obtained by letting
 N -* oc); the standard error being about .15 for each entry. The effect of this
 approximation is seen in the column "d = 0," which would exactly equal column
 "(3.6)" if N -x cc. (Within each trial, the same set of random numbers was used to
 generate the four different uniform distributions for Z,, d = 0, .25, .5, 1.)
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 8 B. EFRON

 TABLE 1*

 Unsmoothed Smoothed Bootstrap (3.11)

 Bootstrap Z, uniform dist. on [- d/2, d/2] Z1 triangular
 Trial# (3.6) (3.10) d = 0 d =.25 d =.5 d= 1 dist., a2 1/12

 1 1.07 1.18 1.09 1.10 1.12 1.11 1.16
 2 .96 .74 1.10 1.10 1.08 1.09 1.15
 3 1.22 .74 1.36 1.35 1.33 1.43 1.52
 4 1.38 1.51 1.44 1.41 1.38 1.28 1.30
 5 1.00 .83 1.03 1.05 1.09 1.14 1.17
 6 1.13 1.21 1.27 1.26 1.23 1.20 1.26
 7 1.07 .98 1.01 .94 .83 .79 .92
 8 1.51 1.40 1.40 1.45 1.47 1.51 1.50
 9 .56 .64 .69 .71 .74 .80 .81
 10 1.05 .86 1.14 1.17 1.20 1.13 1.22

 Ave. 1.09 1.01 1.15 1.15 1.15 1.15 1.20
 S.D. .26 .30 .23 .23 .23 .23 .22

 *Ten Monte Carlo trials of Xi -ind 9L(0, 1), i = 1, 2,..., 13 were used to compare different
 bootstrap methods for estimating the expected value of random variable (3.12). The true

 expectation is 0.95. The quantities tabled are E*R*, the bootstrap expectation for that trial. The
 values in the first two columns are for the bootstrap as described originally, and for the
 symmetrized version (3.8)-(3. 10). The smoothed bootstrap expectations were approximated using
 a secondary Monte Carlo simulation for each trial, N = 50, as described in "Method 2," Section
 2. Each of these entries estimates the actual value of E*R* unbiasedly with a standard error of
 about .15. The column "d = 0" would exactly equal column "(3.6)" if N - oo.

 The most notable feature of Table 1 is that the simplest form of the bootstrap,

 "(3.6)," seems to do just as well as the symmetrical or smoothed versions. A larger
 Monte Carlo investigation of the same situation as in Table 1, 200 trials, 100
 bootstrap replications per trial, was just a little more favorable to the smoothed

 bootstrap methods:

 (3.6) (3.10) d = 0 d = .25 d = .5 d= 1 d = 2
 AVE.: 1.01 1.00 1.00 1.01 1.00 .99 .93

 S.D.: .31 .33 .32 [.31] .32 [.30] .32 [.30] .30 [.29] .26 [.25].

 (The figures in square brackets are estimated standard deviations if N were
 increased from 100 to oo, obtained by a components of variance calculation.)

 Remembering that we are trying to estimate the true value EFR = .95, these seem
 like good performances for a nonparametric method based on a sample size of just
 13.

 The symmetrized version of the bootstrap might be expected to do relatively
 better than the unsymmetrized version if R itself was of a less symmetric form than

 (3.12), e.g., R(X, F) = exp{X(m) - O(F)}. Likewise, the smoothed versions of the
 bootstrap might be expected to do relatively better if R itself were less smooth, e.g.,

 R(X, F) = Prob{X(m) > 8(F) + a(F)}. However no evidence to support these
 guesses is available at present.
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 BOOTSTRAP METHODS 9

 4. Error rate estimation in discriminant analysis. This section discusses the

 estimation of error rates in a standard linear discriminant analysis problem. There

 is a tremendous literature on this problem, nicely summarized in Toussaint [17]. In
 the two examples considered below, bootstrap methods outperform the commonly

 used "leave-one-out," or cross-validation, approach (Lachenbruch and Mickey [12]).

 The data in the discriminant problem consists of independent random samples

 from two unknown continuous probability distributions F and G on some k-dimen-

 sional space Rk,

 (4.1) Xi=xi, XiV-indF F1,2,. m

 yi = yj, Yj -ind G j = 1, 2, . ..,n.

 On the basis of the observed data X = x, Y = y we use some method (linear

 discriminant analysis in the examples below) to partition Rk into two complemen-

 tary regions A and B, the intent being to ascribe a future observation z to the F

 distribution if z E A, or to the G distribution if z E B.

 The obvious estimate of the error rate, for the F distribution, associated with the

 partition (A, B) is

 -- {xi {x- B) (4.2) errorF =

 which will tend to underestimate the true error rate

 (4.3) errorF= ProbF{X E B).

 (In probability calculation (4.3), B is considered fixed, at its observed value, even

 though it is originally determined by a random mechanism.) We will be interested

 in the distribution of the difference

 (4.4) R((X, Y), (F, G)) = errorF -orF,

 and the corresponding quantity for the distribution G. We could directly consider

 the distribution of errorF, but concentrating on the difference (4.4) is much more

 efficient for comparing different estimation methods. This point is discussed briefly

 at the end of the section.

 Given x and y, we define the region B by

 (4.5) B={z: (y-)'S '(z- 2)> logL},

 where x- = xil/m, y = Eyj/n, and S = [E(xi - xi)(xi - x-)' + 2(yj - yX(yj -
 yj)']/(m + n). This is the maximum likelihood estimate of the optimum division
 under multivariate normal theory, and differs just slightly (in the definition of S)

 from the estimated version of the Fisher linear discriminant function discussed in

 Chapter 6 of Anderson [1].
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 10 B. EFRON

 "Method 2," the brute force application of the bootstrap via simulation, is

 implemented as follows: given the data x, y, bootstrap random samples

 (4.6) Xi* = g*, Xi* -ind F 1, 2, ... , m

 Yi = Yi*, Y-. -ind G j G1 2, ... d n
 A A

 are generated, F and G being the sample probability distributions corresponding to

 F and G. This yields a region B* defined by (4.5) with x*, y*, S* replacing x, yT, S.
 The bootstrap random variable in this case is

 (4.7) R* = R((X*, Y*), (F 6)) = #j{Xi E B*)} _ #{xi* E B*}
 m m

 In other words, (4.7) is the difference between the actual error rate, actual now

 being defined with respect to the "true" distribution F, and the apparent error rate

 obtained by counting errors in the bootstrap sample.

 Repeated independent generation of (X*, Y*) yields a sequence of independent

 realizations of R*, say R*I, R*2, ... R R which are then used to approximate the
 actual bootstrap distribution of R*, this hopefully being a reasonable estimate of

 the unknown distribution of R. For example, the bootstrap expectation E*R* -

 zj= I R*"i/N can be used as an estimate of the true expectation EF GR.
 To test out this theory, bivariate normal choices of F and G were investigated,

 (4.8) F:X - Dt2(( 2 ) ) G: )

 Two sets of sample sizes, m = n = 10 and m = n = 20, were looked at, with the
 results shown in Table 2. (The entries of Table 2 were themselves estimated by

 averaging over repeated Monte Carlo trials, which should not be confused with the

 TABLE 2*

 m=n=10 m=n=20

 Random Variable Mean (S.E.) S.D. Mean (S.E.) S.D. Remarks

 Error Rate Diff. (4.4) R .062 (.003) .143 .028 (.002) .103 Based on 1000 trials

 Bootstrap Expectation E* R* .057 (.002) .026 .029 (.001) .015 Based on 100 trials;
 N = 100 Bootstrap

 [.023] [.011] Replications per
 trial. (Figure in

 Bootstrap Standard SD*(R*) .131 (.0013) .016 .097 (.002) .010 brackets is S.D. if
 Deviation N= oo.)

 Cross-Validation Diff. R .054 (.009) .078 .032 (.002) .043 Based on 40 trials

 * The error rate difference (4.4) for linear discriminant analysis, investigated for bivariate normal samples
 (4.8). Sample sizes are m = n = 10 and m = n = 20. The values for the bootstrap method were
 obtained by Method 2, N = 100 bootstrap replications per trial. The bootstrap method gives useful
 estimates of both the mean and standard deviation of R. The cross-validation method was nearly
 unbiased for the expectation of R, but had about three times as large a standard deviation. All of the
 quantities in this table were estimated by repeated Monte Carlo trials; standard errors are given for the
 means.
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 BOOTSTRAP METHODS 1I1

 Monte Carlo replications used in the bootstrap process. "Replications" will always

 refer to the bootstrap process, "trials" to repetitions of the basic situation.) Because

 situation (4.8) is symmetric, only random variable (4.4), and not the corresponding

 error rate for G, need be considered.

 Table 2 shows that with m = n = 10, the random variable (4.4) has mean and

 standard deviation approximately (.062, .143). The apparent error rate underesti-

 mates the true error rate by about 6%, on the average, but the standard deviation of

 the difference is 14% from trial to trial, so bias is less troublesome than variability

 in this situation. The bootstrap method gave an average of .057 for E*R*, which,

 allowing for sampling error, shows that the statistic E*R* is nearly an unbiased
 estimator for EF, GR. Unbiasedness is not enough, of course; we want E*R* to
 have a small standard deviation, ideally zero, so that we can rely on it as an

 estimate. The actual value of its standard deviation, .026, is not wonderful, but

 does indicate that most of the trials yielded E*R* in the range [.02, .09], which

 means that the statistician would have obtained a reasonably informative estimate

 of the true bias EF, GR = .062.
 As a point of comparison, consider the cross-validation estimate of R, say R,

 obtained by: deleting one x value at a time from the vector x; recomputing B using

 (4.5), to get a new region B (it is important not to change m to m - 1 in

 recomputing B-doing so results in badly biased estimation of R); seeing if the

 deleted x value is correctly classified by B; counting the proportion of x values

 misclassified in this way to get a cross-validated error rate error F; and finally,

 defining R = error F - errorF. The last row of Table 2 shows that R has mean and

 standard deviation approximately (.054, .078). That is, R is three times as variable as

 E*R* as an estimator of EF, GR.

 The bootstrap standard deviation of R*, SD*(R*) = {(E.N= [R*J -E*R*] (N
 - I)}2, can be used as an estimate of SDF G(R), the actual standard deviation of

 R. Table 2 shows that SD*(R*) had mean and standard deviation (.131, .016)

 across the 100 trials. Remembering that SDF G(R) = .143, the bootstrap estimate

 SD*(R*) is seen to be a quite useful estimator of the actual standard deviation
 of R.

 How much better would the bootstrap estimator E*R* perform if the number of

 bootstrap replications N were increased from 100 to, say, 10,000? A components of
 variance analysis of all the data going into Table 2 showed that only moderate

 further improvement is possible. As N -x o, the trial-to-trial standard deviation of
 E*R* would decrease from .026 to about .023 (from .015 to .011 in the case
 m = n = 20).

 The reader may wonder which is the best estimator of the error rate errorF itself,

 rather than of the difference R. In terms of expected squared error, the order of

 preference is errorF + E*R* (the bias-corrected value based on the bootstrap),

 ~ii~i~F, and lastly error F but the differences are quite small in the two situations of
 Table 2. The large variability of efforF, compared to its relatively small bias, makes

This content downloaded from 
������������108.67.4.52 on Mon, 25 Sep 2023 16:37:58 +00:00������������� 

All use subject to https://about.jstor.org/terms



 12 B. EFRON

 bias correction an almost fruitless chore in these two situations. (Of course, this
 might not be so in more difficult discriminant problems.) The bootstrap estimates of

 EF, GR and SDF, G(R) considered together make it clear that this is the case, which is
 a good recommendation for the bootstrap approach.

 5. Relationship with the jackknife. This section concerns "Method 3" of ap-

 proximating the bootstrap distribution, Taylor series expansion (or the delta

 method), which turns out to be the same as the usual jackknife theory. To be

 precise, it is the same as Jaeckel's infinitesimal jackknife [10, 14], a useful mathe-

 matical device which differs only in detail from the standard jackknife. Many of
 the calculations below, and in Remarks G-K of Section 8, can be found in

 Jaeckel's excellent paper, which offers considerable insight into the workings of
 jackknife methods.

 Returning to the one-sample situation, define Pi* = N.*/n, where Ni* = {Xi*=
 xi} as at (3.2), and the corresponding vector

 (5.1) P = (P*I, P2*, , P,)
 By the properties of the multinomial distribution, P* has mean vector and covari-
 ance matrix

 (5.2) E*P* = e/n, Cov*P* = I/n2 - e'e/n3

 under the bootstrap sampling procedure, where I is the identity matrix and

 Given the observed data vector X = x, and therefore F, we can use the
 abbreviated notation

 (5.3) R(P*) = R(X*, Ft)

 for the bootstrap realization of R corresponding to P*. In making this definition we

 assume that the random variable of interest, R(X, F), is symmetrically defined in

 the sense that its value is invariant under any permutation of the components of X,

 so that it is sufficient to know N* = nP* in order to evaluate R(X*, F). This is
 always the case in standard applications of the jackknife.

 We can approximate the bootstrap distribution of R(X*, F) by expanding R(P*)
 in a Taylor series about the value P* = e/n, say

 (5.4) R(P*) R(e/n) + (P* - e/n)U + '(P* - e/n)V(P* - e/n)'.

 Here

 (5.5) ~~~R(P*) a R(P*) (5.5) U= V= ..P.

 P* =e/n P*=e/n
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 BOOTSTRAP METHODS 13

 Expansion (5.4), and definitions (5.5), assume that the definition of R(P*) can be

 smoothly interpolated between the lattice point values originally contemplated for

 P*. How to do so will be obvious in most specific cases, but a general recipe is

 difficult to provide. See Remarks G and H of Section 8.

 The restriction 2Pi* = 1 has been ignored in (5.4), (5.5). This computational
 convenience is justified by extending the definition of R(P*) to all vectors P*

 having nonnegative components, at least one positive, by the homogeneous exten-

 sion

 (5.6) R(P*) = R l '

 It is easily shown that the homogeneity of definition (5.6) implies

 (5.7) eU = 0, eV = -nU', eVe' = 0.

 From (5.2) and (5.4) we get the approximation to the bootstrap expectation

 (5.8) E*R(P*) R(e/n) + 2 trace V[I/n- e'e/n3] = R(e/n) + 21-
 where

 (5.9) V= I= ViiJ/n.

 Ignoring the last term in (5.4) gives a cruder approximation for the bootstrap

 variance,

 (5.10) Var*R(P*) U'[I/n2 - e'e/n3]U = I n '2/n2.

 (Both (5.8) and (5.10) involve the use of (5.7).)

 Results (5.8) and (5.10) are essentially the jackknife expressions for bias and
 variance. The usual jackknife theory considers R(X, F) = 9(F) - O(F), the dif-

 ference between the obvious nonparametric estimator of some parameter 9(F) and
 9(F) itself. In this case R(X*, F) = 9(F*) - 9(F), F* being the empirical distribu-

 tion of the bootstrap sample, so that R(e/n) = 9(F) -^9(F) = 0. Then (5.8)
 becomes E*[9(F*) - O(F)] (1/2n)V, suggesting EF[O(F) - O(F)] t (1/2n) V;
 likewise (5.10) becomes Var*[9(F*) -I9(F)] U 1/n2, suggesting VarF9(F) t

 2 E Ui2/n
 The approximations

 (5.11) BiaSF 9(Ft) _2 V, VarF 9(F) 7=I UI2/n2

 exactly agree with those given by Jaeckel's infinitesimal jackknife [10], which
 themselves differ only slightly from the ordinary jackknife expressions. Without

 going into details, which are given in Jaeckel [10] and Miller [14], the ordinary

 jackknife replaces the derivatives Ui = aR(P*)/aPi with finite differences

 (5.12) U, = (n - 1)(R* - R*))
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 14 B. EFRON

 where R4* = R(e(,)/(n - 1)), e(i) being the vector with zero in the ith coordinate
 and ones elsewhere, and R* = R /n. Expansion (5.4) combines with (5.7) to

 give

 (5.13) Ui- Ui.- vii-

 so that Ui/ Ui = 1 + O(1/n). The ordinary jackknife estimate of variance is
 = I U(J/n. (n - 1), differing from the variance expression in (5.11) by a factor
 1 + O(l1/n), the same statement being true for the bias. (In the familiar case
 R = 9(F) - 9(F), definition (5.12) becomes Ui = (n - 1)(9 - 0(i)), where 9(i) is the
 estimate of 0 with xi removed from the sample, and 9 = 0 9(e)/n; the jackknife
 estimate of 9 is 9 = 9 + (n - 1)(0 - 9), and 9i = 9 + Ui is the ith pseudo-value, to
 use the standard terminology.)

 As an example of Method 3, consider ratio estimation, where the Xi are bivariate
 observations, say Xi = (Yi, Zi), and we wish to estimate 9(F) = EFY/EFZ. (Take
 Y, Z > 0 for convenience.) Let t(X) = Y/Z, and R(X, F) = t(X)/9(F). It is easily

 verified that

 y. Z. Z.Z7j Y lyZ1 yj zj
 (5.14) U=-i ,i VYJ=2z z -( +--I

 )~ z Z Z \Z y j

 and that (5.8), (5.10) give

 (5.15) E*R* 1 - { Z)( ) - z 1) )

 Var*R* 2[?i Y ]2

 The biased corrected estimate for 9(F) is t(X)/E*R*, with approximate variance

 (/1n)2y[y1/y.-fz_/Zi2. If the statistician feels uneasy about expressions (5.15) for
 any particular data set, perhaps because of outlying values, Method 2 can be

 invoked to check the bootstrap distribution of t(X*) directly.

 The infinitesimal jackknife and the ordinary jackknife can both be applied

 starting from FsYM, (3.8), rather than from F. It is easiest to see how for the
 infinitesimal jackknife. Expansion (5.4) is still valid except that U is now a
 (2n - 1) x 1 vector, V is a (2n - 1) x (2n - 1) matrix, and P* has bootstrap

 mean e/(2n - 1), covariance matrix (1/n)[I/(2n - 1) - e'e(2n - 1)2]. The vari-
 ance approximation corresponding to (5.10) is

 2n- I u2
 (5.16) Var*syMR(P*) = n U=1I

 n(2n - 1

 6. Wilcoxon's statistic. We again consider the two-sample situation (4.1), this

 time with F and G being continuous probability distributions on the real line. The
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 BOOTSTRAP METHODS 15

 parameter of interest will be

 (6.1) 9(F, G) = PF,G(X < Y),

 estimated by Wilcoxon's statistic

 (6.2) 0 = O(A G) = mn_ = I(xi, ij),
 where

 (6.3) I(a,b)= 1 a<b

 =0 a >b.

 The bootstrap variance of 6 can be calculated directly by Method 1, and will
 turn out below to be the same as the standard variance approximation for

 Wilcoxon's statistic. The comparison with Method 3, the infinitesimal jackknife,
 illustrates how this theory works in a two-sample situation. More importantly, it

 suggests the correct analogue of the ordinary jackknife for such situations.

 There has been considerable interest in extending the ordinary jackknife to

 "unbalanced" situations, i.e., those where it is not clear what the correct analogue
 of "leave one out" is, see Miller [15], Hinkley [9]. In the two-sample problem, for

 example, should we leave out one xi at a time, then one yj at a time, or should we

 leave out all mn pairs (xi, yj) one at a time? (The former turns out to be correct.)
 This problem gets more crucial in the next section, where we consider regression
 problems.

 Let R((X, Y), (F, G)) be 9 itself, so that the bootstrap value of R corresponding
 to (X*, Y*) is R((X*, Y*), (F, G)) = 9*

 (6.4) 0* i Y I(xi*, Y *).

 Letting I,J'* = I(Xi*, Yj*), straightforward calculations familiar from standard non-
 parametric theory, give

 (6.5) E* IU* = 9, Var*I,* = 6(1 - 6), E*IUJ*Ii,)* = 92 i tj/j'
 and

 (6.6) E*IJ,* I= f a, [1 - (z)2dF(z)a i7,I
 00

 E*Lj*,j* = f|0 F2(z)dG(z) /3, i#i'.
 00

 Using these results in (6.4) gives

 (6.7) Var*9* = (nna-

 which is the usual estimate for the variance of the Wilcoxon statistic, see Noether
 [16], page 32.
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 16 B. EFRON

 Method 3, the Taylor series or infinitesimal jackknife, proceeds as in Section 5,

 with obvious modifications for the two-sample situation. Let NF =

 (NFI, NF2, * NJm) be the numbers of times xl, x2, , Xp occur in the
 bootstrap sample X*, likewise NG = (NG1, NG NGn) for Y*, and define
 PF* = N*/m, PG = N*/n, these being independent random vectors with mean
 and covariance as in (5.2). The expansion corresponding to (5.4) is

 (6.8) R(P*, PG) R(e/m, e/n) + (PF - e/m)UF + (PG - e/n)UG

 + -(P -e/rm) VF(P- e/rm)'

 + 2(P* - e/m) VFG(P - e/n)'

 + (PG - e/n) VG(P* -c/n)'],

 where

 (6.9) UFi = aR/aPFi, VFii' =a 2RIaPFiaPA VFGij = a 2R/1aPAaPG*J

 all the derivatives being evaluated at (Pr, PG) = (e/m, e/n), analogous definitions
 applying to UG and VG

 The results corresponding to (5.8) and (5.10) are

 (6.10) E*R* R(e/m, e/n) + 2 [2m + nf]

 and

 (6.11) Var*R*-E7=I UA/r2 + J

 VF = 2i VFii/rn, VG = E2JVGH,J/n. For R = 9(F, G} - 9(F, G), the approximations
 corresponding to (5.1 1) are

 (6.12)

 BiasFO(F,A) G UG___ BiasF, G ,F, G VarF9 G(F, G) ___ 2 + 2__

 For the case of the Wilcoxon statistic (6.11) (or (6.12)) gives

 n[oc 92] + m[ 2]
 (6.13) Var*9*- mn

 which should be compared with (6.7).
 How can we use the ordinary jackknife to get results like (6.12)? A direct analogy

 of (5.12) can be carried through, but it is simpler to change definitions slightly,
 letting

 (6.14) D = R(e/m, e/n) - R(e(i)/ (m - 1), e/n)

 D( j)= R(e/m, e/n) - R(e/m, e(j)/ (n - 1)),
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 BOOTSTRAP METHODS 17

 the difference from R((x, y), (F, G)) obtained by deleting xi from x or yj from y.
 Expansion (6.8) gives

 (6.15) D i,2 U- 1 Fii
 (r _ I)2 F m2(m -)2Fll

 D (n - 2)2u 1

 From (6.15) it is easy to obtain approximations for the bias and variance
 expressions in terms of the D's:

 ) 2 (f 2 (6.16) - m ,= D(i ,+EJID J )]2[ 1 ) VF +(n_ )VGA

 which, as m and n grow large, approaches the second term in (6.10). (For
 R = 09-9, this gives the bias-corrected estimate 9= (m + n -1)9- i 9 -

 Ej 9( j).) Likewise, just using the first line of (6.8) gives

 (6.17) 2,= D( + E= D(J) _m2(m -2)2 27=1 UA2 n2(n -2)2 =l Uc( 22

 J= (i J ~(in- 1)4 in2 (n - 1)2 n 2

 which approaches (6.11) as m, n x0.
 The advantage of the D's over expressions like (5.12) is that no group averages,

 such as R *, need be defined. Group averages are easy enough to define in the
 two-sample problem, but are less clear in more complicated situations such as
 regression. Expressions (6.16) and (6.17) are easy to extend to any situation (which
 doesn't necessarily mean they give good answers-see the remarks of the next
 section!).

 7. Regression models. A reasonably general regression model is

 (7.1) Xi = gi(f) + ci i = 2, ... , n,

 the g(*) being known functions of the unknown parameter vector /3, and

 (7.2) Ei -ind F i= 1, 2, . . ., n.

 All that is assumed known about F is that it is centered at zero in some sense,
 perhaps EFE = 0 or MedianFE = 0. Having observed X = x, we use some fitting
 technique to estimate ,B, perhaps least squares,

 (7.3) , : minfl 7,=I[Lx -

 and wish to say something about the sampling distribution of /3.
 Method 2, the brute force application of the bootstrap, can be carried out by

 defining F as the sample probability distribution of the residuals Ei,

 (7.4) F: mass- at i = Xi - gi() i=,2,...,n.
 nI
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 18 B. EFRON

 (If one of the components of /3 is a translation parameter for the functions g(*),

 then F has mean zero. If not, and if the assumption EFE = 0 is very firm, one might

 still modify F by translation to achieve zero mean.) The bootstrap sample, given

 (l], F), is

 (7.5) Xi* = gi(,] + OEi*, e*~n F i=1 2, ... ., n.

 Each realization of (2.5) yields a realization of /3* by the same minimization

 process that gave /,I

 (7.6) 8 mine i"=[ I[ -

 Repeated independent bootstrap replications give a random sample

 *I, f I*2, A*3, ... , 18*N which can be used to estimate the bootstrap distribution of

 A handy test case is the familiar linear model, gi( /3) = ci/3, c* a known 1 x p
 vector, with first coordinate cil = 1 for convenience. Let C be the n x p matrix
 whose ith- row is ci, and G the p x p matrix C'C, assumed nonsingular. Then the
 least squares estimator ,B = G 1C'X has mean /3 and covariance matrix a2G-1 by
 the usual theory.

 The bootstrap values 4.* used in (7.5) are independent with mean zero and

 variance a2 = Enl [X - g( I)]2/n. This implies that /3* - G 1C'X* has bootstrap
 mean and variance

 (7.7) E*/3* = , Cov*/* -= 2G-(.

 The implication that fl is unbiased for /3, with covariance matrix approximately

 equal to a2G 1, agrees with traditional theory, except perhaps in using the estimate
 a2 for a2.

 Miller [15] and Hinkley [9] have applied, respectively, the ordinary jackknife and
 infinitesimal jackknife to the linear regression problem. They formulate the situa-

 tion as a one-sample problem, with (ci, xi) as the ith observed data point, essen-
 tially removing one row at a time from the model X = C/3 + e. The infinitesimal
 jackknife gives the approximation

 (7.8) Cov G-'[En=I cc ]G- i
 (and the ordinary jackknife a quite similar expression) for the estimated covariance
 matrix. This doesn't look at all like (7.7)!

 The trouble lies in the fact that the jackknife methods as used above ignore an

 important aspect of the regression model, namely that the errors Ei are assumed to
 have the same distribution for every value of i. To make (7.8) agree with (7.7) it is

 only necessary to "symmetrize" the data set by adding hypothetical data points,

 corresponding to all the possible values of the residual E, at each value of i, say

 (7.9) Xiv = ci/ +E
 j = 1,2,...,n (i= 1,2,...,n).
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 BOOTSTRAP METHODS 19

 Notice that the bootstrap implicitly does this at step (7.5). Applying the infinitesimal

 jackknife to data set (7.9), and remembering to take account of the artificially

 increased amount of data as at step (5.16), gives covariance estimate (7.7).

 Returning to the nonlinear regression model (7.1), (7.2), where bootstrap-jack-

 knife methods may really be necessary in order to get estimates of variability for /,l
 we now suspect that jackknife procedures like "leave out one row at a time" may

 be inefficient unless preceded by some form of data symmetrization such as (7.9).

 To put things the other way, as in Hinkley [9], such procedures tend to give

 consistent estimates of Covy / without assumption (7.2) that the residuals are

 identically distributed. The price of such complete generality is low efficiency.

 Usually assumption (7.2) can be roughly justified, perhaps after suitable transfor-

 mations on X, in which case the bootstrap should give a better estimate of Covyl/.

 8. Remarks.

 REMARK A. Method 2, the straightforward calculation of the bootstrap distri-

 bution by repeated Monte Carlo sampling, is remarkably easy to implement on the

 computer. Given the original algorithm for computing R, only minor modifications

 are necessary to produce bootstrap replications R*1, R*2, ... , R*N. The amount of

 computer time required is just about N times that for the original computations.

 For the discriminant analysis problem reported in Table 2, each trial of N = 100

 replications, m = n = 20, took about 0.15 seconds and cost about 40 cents on

 Stanford's 370/168 computer. For a single real data set with m = n = 20, we might
 have taken N = 1000, at a cost of $4.00.

 REMARK B. Instead of estimating 9(F) with t(X), we might make a transforma-
 tion 4 = g(O), s = g(t), and estimate ?(F) = g(O(F)) with s(X) = g(t(X)). That is,

 we might consider the random variable S(X, F) = s(X) - o(F) instead of R(X, F)
 - t(X) - O(F). The effect of such a transformation on the bootstrap is very

 simple: a bootstrap realization R* = R*(X*, F) = t(X*) - O(F) transforms into

 S = S(X*, F) = g(t(X*)) - g(O(F)), or more simply

 (8.1) S* = g(R* + O)-

 so the bootstrap distribution of R* transforms into that of S* by (8.1).
 Figure 1 illustrates a simple example. Miller [14], page 12, gives 9 pairs of

 numbers having sample Pearson correlation coefficient p = .945. The top half of

 Figure 1 shows the histogram of N = 1000 bootstrap replications of p*-p, the
 bottom half the corresponding histogram of tanh-1 p*-tanh-1 p. The first dis-
 tribution straggles off to the left, the second distribution to the right. The median is

 above zero, but only slightly so compared to the spread of the distributions,

 indicating that bias correction is not likely to be important in this example.

 The purpose of making transformations is, presumably, to improve the inference

 process. In the example above we might be willing to believe, on the basis of

 normal theory, that tanh-1 p-tanh1 p is more nearly pivotal than p - p (see
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 20 B. EFRON

 Median
 1/6 5/6

 -.24 -.22 -20 -.18 -.16 -.14 -.12 -.10 -.08 -.06 -.04 -.02 0 .02 .04 .06

 A* A

 1/6 Median 5/6

 -1.4 -1.2 -1.0 -.8 -.6 -.4 -2 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6

 tonh A tanh p
 FIG. 1. The top histogram shows N = 1000 bootstrap replications of p*- for
 the nine data pairs from Miller [10]: (1.15, 1.38), (1.70, 1.72), (1.42, 1.59),
 (1.38, 1.47), (2.80, 1.66), (4.70, 3.45), (4.80, 3.87), (1.41, 1.31), (3.90, 3.75). The
 bottom histogram shows the corresponding replications for tanhl- p* -
 tanh- j p. The 1/6, 1/2, and 5/6 quantiles are shown for both distributions. All
 quantiles transform according to equation (8.1).
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 BOOTSTRAP METHODS 21

 Remark E) and so more worthwhile investigating by the bootstrap procedure. This

 does not mean that the bootstrap gives more accurate results, only that the results

 are more useful. Notice that if g( ) is monotone, then any quantile of the bootstrap

 distribution of R* maps into the corresponding quantile of S* via (8.1), and

 vice-versa. In particular, if we use the median (rather than the mean) to estimate

 the center of the bootstrap distribution, then we get the same answer working

 directly with 9*-9 (- -p in the example), or first transforming to c*-

 (tanh1 p*-tanh1 p), taking the median, and finally transforming back to the

 original scale.

 REMARK C. The bias and variance expressions (5.1 1) suggested by the infinites-

 imal jackknife transform exactly as in more familiar applications of the "delta

 method." That is, if + = g(f), k = g(9) as above, and BiasF 9S VarF 9 are as given
 in formula (5.11), then it is easy to show that

 (8.2) F g'(i)BiaF 6 + 2( rF 9,

 VarF O = [ g()V]2VarF 9.

 In the context of this paper, the infinitesimal jackknife is the delta method; starting

 from a known distribution, that of P*, approximations to the moments of an

 arbitrary function R(P*) are derived by Taylor series expansion. See Gray et al. [41
 for a closely related result.

 REMARK D. A standard nonparametric confidence statement for the median

 9(F), n = 13, is

 (8.3) ProbF{x(4) < 9 < X(lO)} = Prob{4 < Bi(13, 2) < 9) = .908.
 If we make the continuity correction of halving the end point probabilities, (3.6)

 gives

 (8.4) Prob* {X(4) < 9* < X(o)} = .914,

 where 0* = X(*,), the bootstrap value of the sample median. The agreement of (8.4)
 with (8.3) looks striking, until we try to use (8.4) for inference about 9; (8.4) can be
 rewritten as Prob {x(4)-X(7) < -9 <X(l0,-X(7)} (remembering that 0 =

 X(7)), which suggests

 (8.5) ProbF{x(4) - X(7) <9 -0 <X(0O) - .914.
 The resulting confidence interval statement for 9, again using 0 = X(7), iS

 (8.6) ProbF{2x(7) -x(1o) < 9 < 2X(7) - X(4) .914,
 which is the reflection of interval (8.3) about the median!

 The trouble here has nothing in particular to do with the bootstrap, and does not

 arise from the possibly large approximation error in statement (8.5), but rather in

 the inferential step from (8.5) to (8.6), which tries to use 9 - 9 as a pivotal quantity.
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 22 B. EFRON

 The same difficulty can be exhibited in parametric families: suppose we know that

 F is a translation of a standard exponential distribution (density e X, x > 0). Then
 there exist two positive numbers a and b, a < b, such that ProbFt- a <9 - 9 <
 b} = .91. The corresponding interval statement ProbF{x(7)- b < 9 < X(7) + a) =
 .91 will tend to look more like (8.6) than (8.3).

 REMARK E. The difficulty above is a reminder that the bootstrap, and the

 jackknife, provide approximate frequency statements, not approximate likelihood

 statements. Fundamental inference problems remain, no matter how well the

 bootstrap works. For example, even if the bootstrap expectation E*(6* - 9)2 very

 accurately estimates EF(O-9)2, the resulting interval estimate for 9 given 9 will be

 useless if small changes in F (or more exactly, in O(F)), result in large changes in
 EF( - 9)2

 For the correlation coefficient, as discussed in Remark B, Fisher showed that

 tanh- 1 - tanh1 p is nearly pivotal when sampling from bivariate normal popu-
 lations. That is, its distribution is nearly the same for all bivariate normal popula-

 tions, at least in the range -.9 < p < .9. This property tends to ameliorate
 inference difficulties, and is the principal reason for transforming variables, as in

 Remark B. The theory of pivotal quantities is well developed in parametric

 families, see Barnard [2], but not in the nonparametric context of this paper.

 REMARK F. The classic pivotal quantity is Student's t-statistic. Tukey has

 suggested using the analogous quantity (2.3) for hypothesis testing purposes, relying

 on the standard t tables for significance points. This amounts to treating (2.3) as a

 pivotal quantity for all choices of F, O(F), and t(X). The only theoretical justifica-

 tions for this rather optimistic assumption apply to large samples, where the

 Student t effect rapidly becomes negligible, see Miller [14]. Given the current state

 of the theory, one is as well justified in comparing (2.3) to a 9L(0, 1) distribution as
 to a Student's t distribution (except when t(X) = X).

 An alternative approach is to bootstrap (2.3) by Method 2 to obtain a direct

 estimate of its distribution, instead of relying on the t distribution, and then

 compare the observed value of (2.3) to the bootstrap distribution.

 REMARK G. The rationale for bootstrap methods becomes particularly clear

 when the sample space 9 of the Xi is a finite set, say

 (8.7) 9 = {l, 29 3, . . ., L}.
 The distribution F can now be represented by the vector of probabilities f =

 (f1,f2, . . * fL)fl = ProbF{X1 = 1). For a given random sample X letf1 = #f =
 I/)n and f = (f1,f2, ... , fL), so that if R(X, F) is symmetrically defined in the
 components of X we can write it as a function of f and f, say

 (8.8) R(X, F) = Q(f, f).

 Likewise R(X*, F) = Q(f*, f), where f* = Xi* = 1)/n and f =
 A
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 BOOTSTRAP METHODS 23

 Bootstrap methods estimate the sampling distribution of Q(f, f), given the true
 distribution f, by the conditional distribution of Q(f*, f) given the observed value
 of f. This is plausible because

 (8.9) flf~ ' L(n, f) and f*If -' 9L(n, f),
 where 9L(n, f) is the L-category multinomial distribution with sample size n,
 probability vector f. In large samples we expect f to be close to f, so that for

 reasonable functions Q(., *) (8.9) should imply the approximate validity of the
 bootstrap method.

 The asymptotic validity of the bootstrap is easy to verify in this framework,
 assuming some regularity conditions on Q(., .). Suppose that Q(f, f) = 0 for all f
 (as it does in the usual jackknife situation where R(X, F) = 1(F) - O(F)); that the
 vector u(f*, f) with lth component equal to aQ(f*, f)/af,* exists continuously for
 (f*, f) in an open neighborhood of (f, f); and that u = u(f, f) does not equal zero.

 By Taylor's theorem, and the fact that f* and f converge to f with probability one,

 (8.10) Q(fI f) = (f -f)(u + en) and Q(f*, f) = (f* -f) (u + En),

 both en and en converging to zero with probability one. From (8.9) and the fact that
 f converges to f with probability one, we have

 (8.11) n2(f -f)lIf >L(O, Zf) and n2(f* - f)f J-> 'L(O f),

 where Yf is the matrix with element (1, m) equal to fi(81m - fin). Combining (8.10)
 and (8.11) shows that the bootstrap distribution of n IQ(f*, f), given f, is asymptoti-

 I ^

 cally equivalent to the sampling distribution of n 2Q(f, f), given the true probability

 distribution f. Both have the limiting distribution %(0, u'2U).
 The argument above assumes that the form of Q(., .) does not depend upon n.
 More careful considerations are necessary in cases like (2.3) where Q(., .) does
 depend on n, but in a minor way. Some nondifferentiable functions such as the
 sample median (3.3) can also be handled by a smoothing argument, though direct

 calculation of the limiting distribution is easier in that particular case.

 REMARK H. Taylor expansion (5.4) looks suspicious because the dimension of

 the vectors involved increases with the sample size n. However in situation (8.7),

 (8.8), it is easy to verify that (5.4) is the same as the second order Taylor expansion
 of Q(f*, f), for f* near f,

 (8.12) Q(f*, i) Q(f, f) + (2 - f)u + (j* - f - f).

 Here u has /th element aQ(f*, f)/af*l7i.i and vi has /,mth element
 a2Q(f*, f)/aJ14a-f*=*. The dimension of the vectors in (8.12) is L, and does not
 increase with sample size n. Expressions (5.8), (5.10) are the standard delta theory

 approximation for the mean and variance of Q(f*, f), given f, obtained from (8.12)
 and the distributional properties of f*If -L(n, f).
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 24 B. EFRON

 REMARK I. Hartigan [5, 7] has suggested using subsample values to obtain
 confidence statements for an estimated parameter. His method consists of choosing

 a vector x* whose components are a nonempty subset of the observed data vector

 X = x (so each component xi appears either zero or one time in x*). This process is
 repeated N times, where N is small compared to 2", giving vectors

 x*1, x*2, . ., x*N and corresponding subsample values t(x*1), t(x*2), * , t(X*N)
 for some symmetric estimator t(.) defined for samples of an arbitrary size. By a

 clever choice of the vectors x*i, and for certain special estimation problems, the

 t(x*-') can be used to make precise confidence statements about an unknown

 parameter. More importantly in the context of this paper, Hartigan shows that by

 choosing the x*i randomly, without replacement, from the 2" - 1 possible non-

 empty subsamples of x, asymptotically valid confidence statements can be made

 under fairly general conditions. This is very similar to bootstrap Method 2, except

 that the x*i are selected by subsampling rather than bootstrapping.

 In the finite case (8.7), let x* be a randomly selected subsample vector, and let

 f*i= = 1}/(number of components of x*), so f* = (f,f,. J** ), as be-
 fore, is the vector of proportions in the artificially created sample. It is easy to show

 that n2(f*)- f -* ?L (O, 2f)9 as at (8.11), which is all that is needed to get the
 same asymptotic properties obtained for the bootstrap. (Conversely, it can be

 shown that bootstrap samples have the same asymptotic "typicality" properties

 Hartigan discusses in [5, 7].) The bootstrap may give better small sample perfor-

 mance, because the similarity in (8.9), which is unique to the bootstrap, is a

 stronger property than the asymptotic equivalence (8.11), and also because the

 artificial samples used by the bootstrap are the same size as the original sample.

 However, no evidence one way or the other is available at the present time.

 Hartigan's 1971 paper [6] introduces another method of resampling, useful for

 constructing prediction intervals, which only involves artificial samples of the same

 size as the real sample. Let {x*, x,. * , x *} be a set of size n, each element of

 which is selected with replacement from { xI, x2, ,xn}. There are (2n -1)
 distinct such sets, not counting differences in the order of selection. (For example

 {xl, x2} yields the three sets {xl, xl}, {x2, x2}, {xI, x2}.) The random version of
 Hartigan's second method selects x*, or more exactly the set of components of x*,

 with equal probability from among these (2n_ 1 ) possible choices. It can be shown

 that this results in n {(f* -f)lf -- >L (0, 22j)9 so that the asymptotic covariance
 matrix is twice what it is in (8.11). Looking at (8.10), one sees that for this

 resampling scheme, 2- 2 Q(f*, f) has the same asymptotic distribution as Q(f, f).

 It is not difficult to construct other resampling schemes which give correct

 asymptotic properties. The important question, but one which has not been
 investigated, is which scheme is most efficient and reliable in small samples.

 REMARK J. In situation (8.7), (8.8), the ordinary jackknife depends on evaluat-

 ing Q(f*, f) for vectors f* of the form f(*I)P

 (8.13) I' -e,), (8.13) - i) f __
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 BOOTSTRAP METHODS 25

 e, = (0, O,..., 1, O,.. , 0), 1 in the /th place. (The values of / needed are those
 occurring in the observed sample (xI, x2, .. ., xn); a maximum of min(n, L)
 different / values are possible.) Notice that

 (8.14) "I 1 2
 (8.14)~ ~ ~ ~~~14* ll( fil < n- I n -

 The "resampling" vectors are distance 0(l/n) away from f, as compared to

 Op(n -2) for the bootstrap vectors f*, as seen in (8.11). In the case of the median,
 (3.3), the jackknife fails because of its overdependence on the behavior of Q(f*, f)

 for f* very near f. In this case the derivative of the function Q(., *) is too irregular

 for the jackknife's quadratic extrapolation formulas to work. The grouped jack-
 knife, in which the f* vectors are created by removing observations from x in

 groups of size g at a time, see page 1 of Miller [14], overcomes this objection if g is

 sufficiently large. (The calculations above suggest g = 0(n 2).) As a matter of fact,
 the grouped jackknife gives the correct asymptotic variance for the median. If g is
 really large, say g = n/2, and the removal groups are chosen randomly, then this
 resampling method is almost the same as Hartigan's subsampling plan, discussed in
 Remark I.

 REMARK K. We have applied the bootstrap in a nonparametric way, but there
 is no reason why it cannot be used in parametric problems. The only change

 necessary is that at (2.4), F is chosen to be the parametric m.l.e. for F, rather than
 the nonparametric m.l.e. As an example, suppose that F is known to be normal,
 with unknown mean and variance, and that we are interested in the expectation of

 R(X, F) = Ia, bI(X), i.e., the probability that X occurs in a prespecified interval
 [a, b]. Then the nonparametric bootstrap estimate is E*R* = G(n)(b) -G(n)(a),

 where G(n) is the cdf of I2=1 X*/n, obtained by convoluting the sample distribu-
 tion F n times and then rescaling by division by n. The parametric bootstrap

 estimate is E* R* = D((b - )/ (6-n - ))n - ((a - V)/ (6/n )), where 6 = IU22
 and P(.) is the standard normal cdf. If F is really normal and if n is moderately
 large, n > 20 according to standard Edgeworth series calculations, then the two
 estimates will usually be in close agreement.

 It can be shown that the parametric version of Method 3 of the bootstrap,

 applied to estimating the variance of the m.l.e. in a one parameter family, gives the
 usual approximation: one over the Fisher information. The calculation is almost
 the same as that appearing in Section 3 of Jaeckel [10].

 Acknowledgments. I am grateful to Professors Rupert Miller and David

 Hinkley for numerous discussions, suggestions and references, and to Joseph

 Verducci for help with the numerical computations. The referees contributed

 several helpful ideas, especially concerning the connection with Hartigan's work,

 and the large sample theory. I also wish to thank the many friends who suggested

 names more colorful than Bootstrap, including Swiss Army Knife, Meat Axe,

 Swan-Dive, Jack-Rabbit, and my personal favorite, the Shotgun, which, to para-

 phrase Tukey, "can blow the head off any problem if the statistician can stand the
 resulting mess."
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