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1 Introduction

The field of statistics is based on the ability to extract meaning and stories about ourselves from data. In
statistical inference settings where data regarding certain members of a population of interest is missing, we
can look to the EM algorithm to provide a theoretically-backed solution. It uses a powerful iterative technique
to cleverly cycle between the features of the data that we have available. In this report, we seek to discuss the
following seminal paper by AP Dempster, NM Laird, and DB Rubin: “Maximum Likelihood From Incomplete
Data Via the EM Algorithm”.

Although the algorithm has alternative names such as the Baum-Welch algorithm in addition to variants in
prior work, this paper was the first to combine previous ideas and theory along with a clear and understandable
framework. We begin with a high-level overview of the algorithm, then discuss its mathematical formalization,
the theory underlying its ability to work, several examples, and conclude with interesting variants.

2 High-Level Overview of the EM Algorithm

Before delving into the math behind the EM algorithm, it will be of use to understand the high-level intuition
behind how it works. Thus, we ask the reader to consider an imaginary “dream world” far from our own, where
an analyst has access to not only the underlying parametric model but also a large sample of data from any
population of interest. In this “dreamworld”, one could posit that these two quantities share a certain level of
information. Specifically, given a large sample of data from the population of interest, the best guess for our
parametric model’s mean would be the sample mean. For example, if we assumed that the parametric form of
the distribution underlying the population was Normal(z, 5), then the most reasonable guess for  would be the
sample mean based on the observed data. This is the intuition underlying the M-Step.

Likewise, given the underlying parametric model, the best guess for a missing data point for some member
of the population would be the mean defined for the model. For example, if we knew that the distribution
underlying the population was ~ Normal(10,5), then the most reasonable guess for the missing data point
would be 10. This is the intuition underlying the E-step. Of course in most real world applications, neither of
these two quantities are available. The EM algorithm assumes one of these “dream-world” settings to get a best
guess for the other setting and then repeats for the reverse. This two-step process is then iteratively repeated.

3 Missing Data

Before introducing a formalization of the EM algorithm, it is essential to formally define the notion of “missing
data”. There are numerous data analysis settings where one must account for certain members of the population
who do not have corresponding data observed. Some simple examples include:

e A factory sensor that malfunctions for a brief period of time
e Census data that isn’t able to access particularly rural communities
e Genetic studies where have only access to data on a subset of the genes

We can represent this notion mathematically by defining a many-one mapping X — ) where X € X is our
world of complete data, and Y (X) € Y is the world of data we observe (so y(z) is simply the complete
data x with some of the points missing). We assume a family of sampling densities f(z|¢), so the distribution
corresponding to the missing data actually observed integrates over every possible dataset x € X that would
lead to that observation y:

9(yle) := f(z|¢)dx

X(y)



Thus, ¢ is able to mathematically account for every possible complete data set that would’ve led to the data
that we actually observed. In the setting of the factory sensor example introduced above, x would be the true
data from time 0 time 10 that would’ve been observed had the sensor not malfunctioned. y is the data that
is observed that excludes the time-window where the sensor was malfunctioning (i.e., time 0 to 9 if the sensor
broke at time 9). Thus, g integrates over every possible value that the sensor could’ve observed from time 9 to
time 10 where each possible value is weighted according to the density f.

4 Formalization of the EM Algorithm

Consider the following function Q:
Q&'10) i= Bllog F(ald")y. 6] = [ log f(al6) f(aé)do
X(y)

We can think of @ as weighting the possible points that the ”complete data” can be based on how likely they
are under our current guess of ¢. Then, we will eventually want to choose the best possible parametrization
choice for ¢’ by finding the one that maximizes this average density based on our current best guess for the
parametrization.

At each step p = 1,2, ... until we converge, the EM algorithm iterates between the following two steps:
1. E-Step: Compute Q(¢|¢?))
2. M-Step: Choose ¢PT1 to be the value of ¢ € Q that maximizes Q(¢|¢p®))

We additionally mote that the EM algorithm has simple extensions to the Bayesian setting where we replace
the MLE with the posterior mode in the M-Step.

5 Theory Underlying EM’s Power

The main idea behind why the EM algorithm “works” is that every step of the algorithm essentially increases
the value of the likelihood. Denote a step of EM by the function M, so ¢®+1) = M (¢®)). Additionally, define
the following three quantities:

o k(x|y, o) := Z((Zil‘i)) is essentially how likely an option for the complete data set (z) is given the observed

data (y) relative to all of the other options for the complete data

o L(¢) :=logg(ylo)
o H(¢'|¢) := Ellog k(xly, ¢')|y, ¢]

Our goal is to show that L(¢) increases or stays the same with each step of the EM algorithm. It’s clear from
these definitions that L(¢) = log f(z|¢) — log k(z|y, ¢). Taking expectations on both sides of this equation
yields:

Q(¢'|¢) = L(¢') + H(¢'|9)

L(M(¢)) — L(¢) = {Q(M(¢)|¢) — Q(¢l¢)} + {H(¢|¢) — H(M(¢)|¢)} = 0

The inequality above follows by the construction in the M-Step (for the first term involving @) and Jensen’s
inequality (for the second term involving H).

6 Important Considerations with use of the EM Algorithm

The exciting theoretical underpinnings of the EM algorithm discussed above are based on two essential assump-
tions. We hi-light these assumptions below in order to help the reader understand the most appropriate settings
for the EM algorithm:

e Parametric assumption on the population distribution

Recall from the previous section that a major element the theory underlying the algorithm was an as-
sumption on the parametric form of the distribution corresponding to the data (i.e., the f defined in the
sampling densities f(x|¢), so they are of some form such as a normal, beta, gamma, etc.). Typically, we do



not have all of the information regarding our population of interest (including its parametric form) as this
is often the motivation behind statistical inference in the first place. Thus, in most applications, we must
settle for a parametric assumption that is reasonable given the information that we have regarding the
population. However, it is important to note the possibility of a population distribution which does not
follow the form of the parametric family being assumed, in which case the EM algorithm will not produce
accurate results. As an example, consider the probability distribution associated with some population
parameter of interest that is normal distributed (i.e., height). In this case, an exponential distribution
assumption will lead to inaccurate estimates for the missing data points and inference. In settings where
one is unsure of a reasonable parametric assumption, a sensitivity analysis may be of interest to consider
how the results are affected by different parametric choices. If the results of the EM algorithm are similar
across a class of reasonable parametric assumptions, then the setting may be appropriate.

Missing data from population whose distribution is equivalent to that of the observed data

Recall from the theory described above (notably in defining the @ function for the E-step) that it was
assumed that the missing data had the same distribution as that of the observed data. Quite often, there
is a reason why the data is missing that could be a result of that population’s distribution being different.
Let’s reconsider two of the three missing data examples discussed above and whether or not the EM
algorithm would be appropriate:

— The factory sensor example (Ex 1) is a valid application of the EM algorithm because the sensor
malfunction is a random event, so there’s no reason for the data during this time period to be different
from data collected while the sensor was functioning correctly

— The census data example (Ex 2) is not necessarily a valid application of the EM algorithm.
This is because the rural communities that we are missing data for likely have a very different
population distribution. Thus, it’s unfair to impute guesses for them based on data from less rural
communities. A variety of demographic factors including average income, race, health, etc. are very
different between these two groups. With that being said, there are corrections and extensions of
the algorithm that can be considered in settings such as this example where we can account for the
increased uncertainty.

7 Examples of the EM Algorithm

Here we discuss a few examples of using EM algorithm with missing data.

7.1 Missing Data Problem

Consider a five-category multinomial population, where the probability is (%, %ﬂ', %(1 — ), %(1 — ), 4
the complete data is x = (z1, 2, -+ ,25). Due to the missing data issue, we only observe y = (y1,y2, - ,¥4),

where y1 = 1 + T2, Y2 = x3,Yy3 = T4,Y4 = T5, and we hope to estimate w. The complete log-likelihood is
1 1 1
flz|m) o< 21 log(é) + (22 + x5) log(zw) + (3 + x4) 1og(1(1 — 7))

The EM steps produce an iterative estimate 7(?):
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The convergence of the EM iterations is shown in Table[I} After 4 iterations, the estimation error falls below le-
4. In particular, the error shrinks with a factor of 0.13 in each iteration, indicating an exponential convergence

behavior.

An alternative approach to estimate m in this model is to merge the first two categories and treat it as a

four-category multinomial population with probability (3 + 7, 1(1 — ), 3(1 — ),

have complete data and therefore m can be simply estimated via maximizing the log-likelihood:

flylm) ocan log(% + %”) + Ya log(iﬂ) + (y2 +y3) log(i(l —)).

Taking the derivative of the log-likelihood gives us:
LIRS R t¥s

+ T 1-x

d
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7). Under this model, we



Table 1: The convergence of EM algorithm in the multinomial model

P ¢ m®) — ¥ () — %) = (2P — %)
0 0-500000000 0-126821498 0-1465

1 0-608247423 0-018574075 0-1346

2 0-624321051 0-002500447 0-1330

3 0626488879 0-000332619 0-1328

4 0-626777323 0-000044176 0-1328

5 0-626815632 0-000005866 0-1328

6 0-626820719 0-000000779 —

7 0-626821395 0-000000104 —

8 0-626821484 0-000000014 —

Solving % f(y|m) = 0 is equivalent to solving a polynomial equation of degree three, which is often complicated.
Instead, EM algorithm can provide a fast, intuitive, and easy-to-compute approach to approximate the MLE
with small errors.

7.2 Finite Mixtures Model

Suppose we have observations y = (y1,--+,¥n), and there exists a finite set of R states, such that each y;

is associated with a unique state (unobserved), denoted as z = (z1,---,2,). Specifically, z; = k indicates y;

iid

belongs to the k-th state. Assume the densities are z; ig v(:|#), yi ~ u(-|z;, ). The complete data likelihood is

n

> (logv(zi|¢) + log u(yil2i, )

=1

log f(y,z|¢) =

The EM steps are:

Zi = k|Ya ¢)(p))

e M step: Complete-data maximization with estimated states z;, i.e., solve p(P+1) = argmaxy E, 1y 4k log f(y,z|o)

e E step: Estimate the hidden states z; for given the current parameters ¢(), i.e., compute P(

A classical example is the Gaussian Mixture Model (GMM). Where we assume the conditional distributions
to be Gaussian.

2 NS Categorical(rmy, -+ ,7R), yilzi = k i Normal(uy, o7)

For E-step, the posterior distribution for states z is

P(2; = k|p)P(yi|zi = k, ¢)
k 7¢ = =
o Zf:l P(z; = jI®)P(yilzi = j, ¢)

For M-step, the expected likelihood is expressed as

TN (yil pk, 07)

w;mv = IED(ZZ = R
Zj:l WjN(injaU?)

n

R
Eqly.sllog f(y,20)] = > > Pz = kly, ¢) log P(yi, 2z = k|¢)

1=1 k=1
1 1 5
—ZZ“”“ log m), — 210g(0k) 2(y )’ +C
=1 k=1 O
The optimizer of M-step is then given by:
Zwk i = Zz 1Wkilli a2 S wiei(yi — fu)?
; Zz:l Wk,i 7 § 2?21 Wk, i

The intuition behind the EM iterations:
o the E steps computes responsibilities wy ; of each point i to each state k.
e the M steps update the state probability, mean, and variance weighted by the computed responsibilities.

e This is often viewed as the soft assignment version of K-means algorithm, where we assign each point to
the closest state, and update the state mean by the sample mean in each state.
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Figure 1. Examples of image segmentation using EM algorithm on Gaussian Mixture Models. Taken from
Professor Scott Linderman’s [Stats 305C materiall

Although the mechanism of GMM is quite simple, it has been widely used in many real-world applications:

8

1. Speaker Identification: GMM can be used for speaker identification systems. Each speaker is modeled
using a GMM trained on their voice data. During identification, the likelihood of the input speech
belonging to each speaker’s GMM is calculated, and the speaker with the highest likelihood is identified.

2. Image Segmentation: GMM can be applied to image segmentation tasks. Each pixel in the image is

represented by a feature vector (e.g., color, texture). The GMM is trained on these feature vectors, and
each Gaussian component represents a different segment or object in the image. The pixels are then
assigned to the most likely Gaussian component, resulting in a segmented image.

3. Anomaly Detection: GMM can be used for anomaly detection in various domains, such as network in-
trusion detection or fraud detection. The GMM is trained on normal data, and during inference, the
likelihood of a new data point belonging to the learned distribution is calculated. If the likelihood falls
below a certain threshold, the data point is considered an anomaly.

Development of EM Algorithm.

While the EM algorithm provides convenient solutions for many simple problems, it has certain limitations and
challenges. In this section, we will explore some variants of the EM algorithm that address these limitations
and discuss the historical development of the algorithm. Despite its effectiveness, the EM algorithm has some
drawbacks that have led to the development of various variants [Gupta et al., 2011]. Let’s discuss a few of these
variants and their motivations.

8.1 Stationary Points and Global Optimization

One limitation of the EM algorithm is that it only finds stationary points of the likelihood function, which
may not necessarily be the global maximum. To overcome this, one approach is to use EM in conjunction with
a global optimizer to explore the parameter space more efficiently [Ali et al., 2005]. By combining EM with


https://slinderman.github.io/stats305c/

techniques such as simulated annealing or genetic algorithms, the chances of finding the global maximum can
be improved.

8.2 Computational Tractability

Another challenge with the EM algorithm is that the required computations may not be tractable, especially
for complex models or large datasets. To address this, several variants have been proposed:

e Generalized EM: In this variant, the M-step is modified to only ensure that the likelihood is increasing,
rather than maximizing it completely. This can be achieved using techniques such as gradient ascent or
Newton’s method.

e MCMC-EM: Markov Chain Monte Carlo (MCMC) methods can be used to approximate the E-step when
the expectation is intractable. By sampling from the posterior distribution of the latent variables, the
expectation can be estimated more efficiently.

8.3 Convergence Speed

The convergence speed of the EM algorithm can be slow in some cases, which has led to the development of
acceleration techniques such as Aitken’s acceleration [Meilijson, 1989]: it accelerates the convergence of EM by
using a Taylor expansion to find the optimal step size. It can be seen as an analogy to Newton’s method for
EM.

8.4 Maximum Likelihood Estimation Alternatives

In some situations, the maximum likelihood estimate may not be the desired output. For example, one may
prefer a posterior distribution to compute the mean. Along this idea, a few variants of EM are:

e Stochastic EM [Celeux, 1985]: In this variant, a random sample is drawn in the E-step to produce a
posterior distribution for the parameters. This introduces stochasticity into the algorithm and can help
escape local optima.

e Data Augmentation [Tanner and Wong, 1987]: This variant randomizes both the E-step and the M-step.
In the M-step, parameters are drawn from a posterior distribution that incorporates prior knowledge. The
original M-step corresponds to finding the posterior mode if a non-informative prior is assumed.

8.5 Historical Notes

The EM algorithm has a rich history, with its ideas being used implicitly in various contexts before its formal
introduction. Here are some notable historical developments:

e In 1886, Newcomb [Newcomb, 1886] considered the estimation of parameters of a mixture of two univariate
normals, which can be seen as the earliest example of an EM-type algorithm.

e In 1958, Hartley [Hartley, 1958 presented the main ideas of EM, rooted in the special case of counting
data. He recognized the potential of the algorithm and expressed satisfaction in seeing its widespread
application.

e In the 1960s and 1970s, Baum and Welch developed the Baum-Welch algorithm [Baum et al., 1970|
Welch, 2003] for fitting hidden Markov models (HMMs). This algorithm is essentially an application
of the EM algorithm to HMMs.

e The EM algorithm was formally introduced and named by Dempster, Laird, and Rubin in their semi-
nal paper [Dempster et al., 1977] in 1977. They generalized the algorithm to solve arbitrary maximum
likelihood problems with missing or latent data.

The quote by Hartley, "I felt like the old minstrel who has been singing his song for 18 years and now finds,
with considerable satisfaction, that his folklore is the theme of an overpowering symphony”, beautifully captures
the journey of the EM algorithm from its early roots to its widespread recognition and application.
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