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 Regression Models and Life-Tables

 BY D. R. Cox

 Imperial College, London

 [Read before the ROYAL STATISTICAL SOCIETY, at a meeting organized by the
 Research Section, on Wednesday, March 8th, 1972, Mr M. J. R. HEALY in the Chair]

 SUMMARY

 The analysis of censored failure times is considered. It is assumed that on
 each individual are available values of one or more explanatory variables.
 The hazard function (age-specific failure rate) is taken to be a function of
 the explanatory variables and unknown regression coefficients multiplied
 by an arbitrary and unknown function of time. A conditional likelihood is
 obtained, leading to inferences about the unknown regression coefficients.
 Some generalizations are outlined.

 Keywords: LIFE TABLE; HAZARD FUNCTION; AGE-SPECIFIC FAILURE RATE; PRODUCT

 LIMIT ESTIMATE; REGRESSION; CONDITIONAL INFERENCE; ASYMPTOTIC THEORY;

 CENSORED DATA; TWO-SAMPLE RANK TESTS; MEDICAL APPLICATIONS; RELIABILITY

 THEORY; ACCELERATED LIFE TESTS.

 1. INTRODUCTION

 LIFE tables are one of the oldest statistical techniques and are extensively used by
 medical statisticians and by actuaries. Yet relatively little has been written about
 their more formal statistical theory. Kaplan and Meier (1958) gave a comprehensive
 review of earlier work and many new results. Chiang in a series of papers has, in
 particular, explored the connection with birth-death processes; see, for example,
 Chiang (1968). The present paper is largely concerned with the extension of the
 results of Kaplan and Meier to the comparison of life tables and more generally to
 the incorporation of regression-like arguments into life-table analysis. The arguments
 are asymptotic but are relevant to situations where the sampling fluctuations are
 large enough to be of practical importance. In other words, the applications are
 more likely to be in industrial reliability studies and in medical statistics than in
 actuarial science. The procedures proposed are, especially for the two-sample
 problem, closely related to procedures for combining contingency tables; see Mantel
 and Haenzel (1959), Mantel (1963) and, especially for the application to life tables,
 Mantel (1966). There is also a strong connection with a paper read recently to the
 Society by R. and J. Peto (1972).

 We consider a population of individuals; for each individual we observe either
 the time to "failure" or the time to "loss" or censoring. That is, for the censored
 individuals we know only that the time to failure is greater than the censoring time.

 Denote by T a random variable representing failure time; it may be discrete or
 continuous. Let F(t) be the survivor function,

 ,(t) = pr (T> t)

 and let A(t) be the hazard or age-specific failure rate. That is,

 (t) =Alim pr(t AT<t+ At|t<T)
 At--O+ At
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 188 Cox - Regression Models and Life Tables [No. 2,

 Note that if T is discrete, then

 A(t) = E A. 8(t- ui), (2)
 where S(t) denotes the Dirac delta function and At = pr (T = tI T) t). By the product
 law of probability F(t) is given by the product integral

 t- r-1

 ( {- A(u) du} = lim {1 - A(Tk) (Tk+l - Tk)}, (3)
 u=O k=O

 the limit being taken as all Tk+1 - Tk tend to zero with 0 = mo < ri < ... < Tr7- < Sr =
 If A(t) is integrable this is

 exp - A(u) du} (4)

 whereas if A(t) is given by (2), the product integral is

 nG (- Aui). (5)
 uj<t

 If the distribution has both discrete and continuous components the product integral
 is a product of factors (4) and (5).

 2. THE PRODUCT-LIMIT METHOD

 Suppose observations are available on no independent individuals and, to begin
 with, that the failure times are identically distributed in the form specified in Section 1.
 Let n individuals be observed to failure and the rest be censored. The rather strong
 assumption will be made throughout that the only information available about the
 failure time of a censored individual is that it exceeds the censoring time. This
 assumption is testable only if suitable supplementary information is available. Denote
 the distinct failure times by

 t(l) < t(2) < ... < t(k)- (6)
 Further let m(i) be the number of failure times equal to t(j), the multiplicity of t(j);
 of course E m(f) = n, and in the continuous case k = n, m(f) = 1.

 The set of individuals at risk at time t -0 is called the risk set at time t and denoted
 R(t); this consists of those individuals whose failure or censoring time is at least t.
 Let r(i) be the number of such individuals for t = t(j). The product-limit estimate of
 the underlying distribution is obtained by taking estimated conditional probabilities
 that agree exactly with the observed conditional frequencies. That is,

 7()=E-bttf (7)
 i=l r(i)

 Correspondingly,

 t-o ( m.

 J(t)= {I- A(u)du}= 1I7I j1-i (8)
 u aO t(i)K (i

 For uncensored data this is the usual sample survivor function; some of the
 asymptotic properties of (8) are given by Kaplan and Meier (1958) and by Efron
 (1967) and can be used to adapt to the censored case tests based on sample cumulative
 distribution function.

 The functions (7) and (8) are maximum-likelihood estimates in the family of all
 possible distributions (Kaplan and Meier, 1958). However, as in the uncensored case,
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 1972] Cox - Regression Models and Life Tables 189

 this property is of limited importance and the best justification is essentially (7).
 The estimates probably also have a Bayesian interpretation involving a very "irregular"
 prior.

 If the class of distributions is restricted, either parametrically or by some such
 condition as requiring A(t) to be monotonic or smooth, the maximum-likelihood
 estimates will be changed. For the monotone hazard case with uncensored data, see
 Grenander (1956). The smoothing of estimated hazard functions has been considered
 by Watson and Leadbetter (1964a, b) for the uncensored case.

 3. REGRESSION MODELS

 Suppose now that on each individual one or more further measurements are

 available, say on variables z1, ..., z.. We deal first with the notationally simpler
 case when the failure-times are continuously distributed and the possibility of ties
 can be ignored. For the jth individual let the values of z be zj = (z11, ..., zp). The z's
 may be functions of time. The main problem considered in this paper is that of
 assessing the relation between the distribution of failure time and z. This will be done
 in terms of a model in which the hazard is

 A(t; z) = exp (z,) AO(t), (9)

 where , is a p x 1 vector of unknown parameters and Ao(t) is an unknown function
 giving the hazard function for the standard set of conditions z = 0. In fact (z4) can
 be replaced by any known function h(z, ,), but this extra generality is not needed at
 this stage. The following examples illustrate just a few possibilities.

 Example 1. Two-sample problem. Suppose that there is just one z variable, p = 1,
 and that this takes values 0 and 1, being an indicator variable for the two samples.
 Then according to (9) the hazards in samples 0 and 1 are respectively Ao(t) and /AO(t),
 where i = efl. In the continuous case the survivor functions are related (Lehmann,
 1953) by Fj(t) = {A0(t)}*. There is an obvious extension for the k sample problem.

 Example 2. The two-sample problem; extended treatment. We can deal with more
 complicated relationships between the two samples than are contemplated in Example
 1 by introducing additional time-dependent components into z. Thus if Z2 = tzl,
 where z1 is the binary variable of Example 1, the hazard in the second sample is

 Ve#2t A0(t). (10)
 Of course in defining Z2, t could be replaced by any known function of t; further,
 several new variables could be introduced involving different functions of t. This
 provides one way of examining consistency with a simple model of proportional
 hazards. In fitting the model and often also in interpretation it is convenient to
 reparametrize (10) in the form

 p exp {12(t - t*)}, (11)
 where t* is any convenient constant time somewhere near the overall mean. This
 will avoid the more extreme non-orthogonalities of fitting. All the points connected
 with this example extend to the comparison of several samples.

 Example 3. Two-sample problem with covariate. By introducing into the models
 of Examples 1 and 2 one or more further z variables representing concomitant
 variables, it is possible to examine the relation between two samples adjusting for the
 presence of concomitant variables.
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 190 Cox - Regression Models and Life Tables [No. 2,

 Example 4. Regression. The connection between failure-time and regressor
 variables can be explored in an obvious way. Note especially that by introducing
 functions of t, effects other than constant multiplication of the hazard can be included.

 4. ANALYSIS OF REGRESSION MODELS

 There are several approaches to the anialysis of the above models. The simplest
 is to assume Ao(t) constant, i.e. to assume an underlying exponential distribution;
 see, for example, Chernoff (1962) for some models of this type in the context of
 accelerated life tests. The next simplest is to take a two-parameter family of hazard
 functions, such as the power law associated with the Weibull distribution or the
 exponential of a linear function of t. Then standard methods such as maximum
 likelihood can be used; to be rigorous extension of the usual conditions for maximum-
 likelihood formulae and theory would be involved to cover censoring, but there
 is little doubt that some such justification could be given. This is in many ways
 the most natural approach but will not be explored further in the present paper.
 In this approach a computationally desirable feature is that both probability density
 and survivor function are fairly easily found. A simple form for the hazard is not
 by itself particularly advantageous, and models other than (9) may be more natural.
 For a normal theory maximum-likelihood analysis of factorial experiments with
 censored observations, see Sampford and Taylor (1959), and for the parametric
 analysis of response times in bioassay, see, Sampford (1954).

 Alternatively we may restrict Ao(t) qualitatively, for example by assuming it to be
 monotonic or to be a step function (a suggestion of Professor J. W. Tukey). The
 latter possibility is related to a simple spline approximation to the log survivor
 function.

 In the present paper we shall, however, concentrate on exploring the consequence

 of allowing AO(t) to be arbitrary, main interest being in the regression parameters.
 That is, we require our method of analysis to have sensible properties whatever the

 form of the nuisance function AO(t). Now this is a severe requirement and unnecessary
 in the sense that an assumption of some smoothness in the distribution Go(t) would
 be reasonable. The situation is parallel to that arising in simpler problems when a
 nuisance parameter is regarded as completely unknown. It seems plausible in the
 present case that the loss of information about ,3 arising from leaving Ao(t) arbitrary
 is usually slight; if this is indeed so the procedure discussed here is justifiable as a

 reasonably cautious approach to the study of P3. A major outstanding problem is the
 analysis of the relative efficiency of inferences about P3 under various assumptions
 about Ao(t).

 The general attitude taken is that parametrization of the dependence on z is
 required so that our conclusions about that dependence are expressed concisely; of
 course any form taken is provisional and needs examination in the light of the data.
 So far as the secondary features of the system are concerned, however, it is sensible
 to make a minimum of assumptions leading to a convenient analysis, provided that
 no major loss of efficiency is involved.

 5. A CONDITIONAL LIKELIHOOD

 Suppose then that Ao(t) is arbitrary. No information can be contributed about
 ,3 by time intervals in which no failures occur because the component Ao(t) might
 conceivably be identically zero in such intervals. We therefore argue conditionally

 on the set {t(i)} of instants at which failures occur; in discrete time we shall condition
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 1972] Cox - Regression Models and Life Tables 191

 also on the observed multiplicities {m(i)}. Once we require a method of analysis
 holding for all AO(t), consideration of this conditional distribution seems inevitable.

 For the particular failure at time t(i), conditionally on the risk set W(t(i)), the
 probability that the failure is on the individual as observed is

 exp{z() P}/Eexp{z( 13}. (12)
 kgf(tmi)

 Each failure contributes a factor of this nature and hence the required conditional
 log likelihood is

 k k

 L(O) = Z(i) p- Elog E exp {z(1) P} .(13)
 i=1 i=1 IC-Mtmo)

 Direct calculation from (13) gives for I, = 1, . .p

 M ) k
 UO(l)= g) E{zi) - A (6()} (14)

 where

 A z61 exp (z1 (3)

 the sum being over leg(t(*)). That is, A(i)(P) is the average of z6 over the finite
 population W(t(i)), using an "exponentially weighted" form of sampling. Similarly

 a32L(P) k (16)
 _16)= - C(6,o(p), (6

 where

 Cq>),i3) = {E z z1 exp (z1 ,)/E exp (z1 f3)} - A(6i)(3) A(qi)(p) (17)

 is the covariance of z6 and zv in this form of weighted sampling.
 To calculate the expected value of (16) it would be necessary to know the times at

 which individuals who failed would have been censored had they not failed. This
 information would often not be available and in any case might well be thought
 irrelevant; this point is connected with difficulties of conditionality at the basis of a
 sampling theory approach to statistics (Pratt, 1962). Here we shall use asymptotic
 arguments in which (16) can be used directly for the estimation of variances, f3 being
 replaced by a suitable estimate. For a rigorous justification, assumptions about the
 censoring times generalizing those of Breslow (1970) would be required. It would
 not be satisfactory to assume that the censoring times are random variables distributed
 independently of the z's. For instance in the two-sample problem censoring might
 be much more severe in one sample than in the other.

 Maximum-likelihood estimates of ,3 can be obtained by iterative use of (14) and
 (16) in the usual way. Significance tests about subsets of parameters can be derived
 in various ways, for example by comparison of the maximum log likelihoods achieved.
 Relatively simple results can, however, be obtained for testing the global null hypo-
 thesis, f3 = 0. For this we treat U(0) as asymptotically normal with zero mean vector
 and with covariance matrix f(0). That is, the statistic

 {U(0)}T {f(0)} 1{U(0)} (18)
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 192 Cox - Regression Models and Life Tables [No. 2,

 has, under the null hypothesis, an asymptotic chi-squared distribution with p degrees
 of freedom.

 We have from (14) and (15) that

 k

 Ug(O) = (z(gi) - A q)), (19)

 where A(gi) -A(gi)(0) is the mean of zg over $9(t(j)). Further, from (16),
 k

 -"(0) = c q(), (20)

 where C(gj) =Cq(,j)(O) is the covariance of zg and zl, in the finite population M(t(i)).
 The form of weighted sampling associated with general ,3 has reduced to random
 sampling without replacement.

 6. ANALYSIS IN DISCRETE TIME

 Unfortunately it is quite likely in applications that the data will be recorded in a
 form involving ties. If these are small in number a relatively ad hoc modification of
 the above procedures will be satisfactory. To cover the possibility of an appreciable
 number of ties, we generalize (9) formally to discrete time by

 A(; z) dt exp (Z_) AO(t_dt. (21)
 - A(t; I1- A0(t) dt'21

 In the continuous case this reduces to (9); in discrete time A(t; z) dt is a non-zero
 probability and (21) is a logistic model.

 The typical contribution (12) to the likelihood now becomes

 exp {S(j) P} E exp {sq) P}, (22)
 IC-ff(to;mus))

 where s(i) is the sum of z over the individuals failing at t(j) and the notation in the
 denominator means that the sum is taken over all distinct sets of m(q) individuals
 drawn from R(t(j)).

 Thus the full conditional log likelihood is

 k k

 S S() P - log EY exp {s(l) .
 il i-1 eflt(No;m(o))

 The derivatives can be calculated as before. In particular,

 k

 U6(0) = Y, {s(gi)-m(i) A q)}, (23)
 i=1

 = k m?(i{r(j)-1} - m (i ) (24)

 Note that (24) gives the exact covariance matrix when the observations z(gi) and
 the totals s(a) are drawn randomly without replacement from thefixedfinite populations
 'q(t(l)), .-, A(t(k)). In fact, however, the population at one time is influenced by the
 outcomes of the "trials" at previous times.
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 1972] Cox - Regression Models and Life Tables 193

 7. THE TWO-SAMPLE PROBLEM

 As an illustration, consider the two-sample problem with the proportional hazard
 model of Section 3, Example 1. Here p = 1 and we omit the first suffix on the indicator
 variable. Then

 k

 U(0) =n1- m(i)A( ), (25)
 i=1

 .1(0) = E (i{{ (f >_ 1} (i}A(j){l-A(i)}, (26)
 i1 {r(j) - 1}

 where A(i) is the proportion of the risk population R(t()) that have z = 1, i.e. belong
 to sample 1, and n1 is the total number of failures in sample 1. An asymptotic two-
 sample test is thus obtained by treating

 U(0)/jO(0) (27)

 as having a standard normal distribution under the null hypothesis. This is different
 from the procedure of Gehan who adapted the Wilcoxon test to censored data
 (Gehan, 1965; Efron, 1967; Breslow, 1970). The test has been considered in some
 detail by Peto and Peto (1972).

 The test (27) is formally identical with that obtained by setting up at each failure
 point a 2 x 2 contingency table (sample 1, sample 2) (failed, survived). To test for
 the presence of a difference between the two samples the information from the
 separate tables can then be combined (Cochran, 1954; Mantel and Haenzel, 1959;
 Mantel, 1963). The application of this to life tables is discussed especially by Mantel
 (1966). Note, however, that whereas the test in the contingency table situation is,
 at least in principle, exact, the test here is only asymptotic, because of the difficulties
 associated with specification of the stopping rule. Formally the same test was given
 by Cox (1959) for a different life-table problem where there is a single sample with
 two types of failure and the hypothesis under test concerns the proportionality of the
 hazard function for the two types.

 When there is a non-zero value of3, the "weighted" average of a single observation
 from the risk population R(t()) is

 1-A(X) + efi A(o)

 and the maximum-likelihood equation U($) = 0 gives, when all failure times are
 distinct,

 kc efA(j)
 k AA = n1. (29)
 i=i 1 -A(,)+efA(A)

 If : is thought to be close to some known constant, it may be useful to linearize (29).
 In particular, if $ is small, we have as an approximation to the maximum-likelihood
 estimate

 Po =(n - E A (j))/E A (j){1 - A (i

 The procedures of this section involve only the ranked data, i.e. are unaffected
 by an arbitrary monotonic transformation of the time scale. Indeed the same is true
 for any of the results in Section 4 provided that the z's are not functions of time. While

 8
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 194 Cox - Regression Models and Life Tables [No. 2,

 the connection with the theory of rank tests will not be explored in detail, it is worth
 examining the form of the test (27) for uncensored data with all failure times distinct.
 For this, let the failure times in sample 1 have ranks c1 < c2 < ... < cn in the ranking
 of the full data. At the ith largest observed failure time, individuals with ranks
 n, n-1, ..., i are at risk, so that

 1 n,

 A(i) = n + l H(c1-i), (30)

 where H(x) is the unit Heaviside function,

 (0 (x<0)q (31)

 Thus, by (25),

 nL c 1

 U(O) = nj - E tE1 -
 I=i=l=n - i+ 1

 n

 = n1- Zenc (32)
 1=1

 where e's are the expected values of the order statistics in a random sample of size
 n from a unit exponential distribution. The test based on (32) is asymptotically fully
 efficient for the comparison of two exponential distributions (Savage, 1956; Cox,
 1964). Further, by (26),

 n, njL

 10'(0) =Eencl- ( 1 + 2n - 21) VnCq (33)
 1=1 1=1

 where

 Cj 1

 v -l 1 (34)

 is the variance of an exponential order statistic.
 Here the test statistic is, under the null hypothesis, a constant minus the total of a

 random sample of size n1 drawn without replacement from the finite population

 .en1. ., enn}. The exact distribution can in principle be obtained and in particular
 it can be shown that

 =nl(n - nl) (n - enn)
 E{U(O)} = 0, var{U(0)}= (35) n(n -1(5

 There is not much point in this case in using the more complicated asymptotic
 formula (33), especially as fairly simple more refined approximations to the distribution
 of the test statistic are available (Cox, 1964). It can easily be verified that

 E{f(0)} - var {U(0)}. (36)

 8. ESTIMATION OF DISTRIBUTION OF FAILURE-TIME

 Once we have obtained the maximum-likelihood estimate of 3, we can consider
 the estimation of the distribution associated with the hazard (10) either for z = 0, or
 for some other given value of z. Thus to estimate A0Q) we need to generalize (7).
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 1972] Cox - Regression Models and Life Tables 195

 To do this we take Ao(t) to be identically zero, except at the points where failures have
 occurred, and carry out a separate maximum-likelihood estimation at each such
 failure point. For the latter it is convenient to write the contribution to AO(t) at t(j)
 in the form

 7T(i) exp (- PZ(v)) (
 1 -iT(T) + 7T(i) exp (- ))

 where 1(i) is an arbitrary constant to be chosen; it is useful to take 1(i) as approxi-
 mately the mean in the relevant risk set. The maximum-likelihood estimate of '7T
 can then be shown to satisfy

 A=M(i) AT(i)(1 _7T A exp{P(zj - 1())} - 1
 () r() r() jR(tm) 1 -Ar + A exp -z ? (37)

 which can be solved by iteration. The suggested choice of 2(i) is designed to make the
 second term in (37) small. Note that in the single-sample case, the second term is
 identically zero. Once (37) is solved for all i, we have by the product integral formula

 =i<t ( - 7rT+7T() exp ( - Z( ))) (38)
 t(i < 1- 1T 7Ti)exp (- 0()

 For an estimate at a given non-zero z, replace exp (- lz(f)) by exp {f(z-
 Alternative simpler procedures would be worth having (Mantel, 1966).

 9. BIVARIATE LIFE TABLES

 We now consider briefly the extension of life-table arguments to multivariate data.
 Suppose for simplicity that there are two types of failure time for each individual
 represented by random variables T1 and T2. For instance, these might be the failure-
 times of two different but associated components; observations may be censored on
 neither, one or both components. For analogous problems in bioassay, see Sampford
 (1952).

 The joint distribution can be described in terms of hazard functions

 A10(t), A20(t), A21(t u), A12(tI u), where

 Avo(t) = i rQ/T +tt-,Tlt1T (P =, 2),A
 At-O+ At

 (t|ju) = lim pr (t < T2 < t+ A tt < T2, T1 = u) (<(39)
 At_O+At

 with a similar definition for A12(t I u). It is easily shown that the bivariate probability
 density function f(tl, t2) is given by

 f(tl, t2) = exp [-f {A10(u) + A20(u)} du - A21(uI tl) du] A10(tl) A21(t21 tl), (40)
 0 t~~~~~~1+?

 for t2 > tl, with again an analogous expression for t2? tl. It is fairly easy to show
 formally that a necessary and sufficient condition for the independence of T1 and
 T2 is

 A12(t u) = A10(t), A21(t u)= 20(t), (41)
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 196 Cox - Regression Models and Life Tables [No. 2,

 as is obvious on general grounds. Note also that if Y(tl, t2) is the joint survivor
 function

 = (t[ 1 [DY(t,] AU(I) D a u,) / (t, u) (42) Yi() -(t, t) a t J 12(t I tDau au(2
 Dependence on further variables z can be indicated in the same way as for (11). The
 simplest model would have the same function of z multiplying all four hazard functions,
 although this restriction is not essential.

 Estimation and testing would in principle proceed as before, although grouping
 of the conditioning u variable seems necessary in the parts of the analysis concerning
 the function A12(tI u) and A21(tI u).

 Further generalizations which will not, however, be explored here are to problems
 in multidimensional time and to problems connected with point processes (Cox and
 Lewis, 1972; Cox, 1972).

 10. AN EXAMPLE

 To illustrate some of the above results, it is convenient to take data of Freireich
 et al. used by Gehan (1965) and several subsequent authors. Table 1 gives the ordered
 times for two samples of individuals; censored values are denoted with asterisks.
 Table 2 outlines the calculation of the simple test statistic U(0) and its asymptotic
 variance. The failure instants and their multiplicities m(q) are listed; A(s) is the pro-
 portion of the relevant risk population in sample 1.

 TABLE 1

 Times of remission (weeks) of leukemia patients
 (Gehan, 1965, from Freireich et al.)

 Sample 0 (drug 6-MP) 6*, 6, 6, 6, 7, 9*, 10*, 10, 11*, 13, 16, 17*, 19*, 20*, 22, 23, 25*,
 32*, 32*, 34*, 35*

 Sample 1 (control) 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

 * Censored.

 The value of U(0) = n - E m() A(s) is 10-25 with an asymptotic standard error
 V/f(0) of 2 50. The critical ratio of juist over 4 compares with about 3X6 for the
 generalized Wilcoxon test of Gehan (1965). The overwhelming significance of the
 difference is in line with one's qualitative impression of the data.

 The technique used to find , was direct computation of the log likelihood as a
 function of : and of a further parameter y to be described in a moment. This, while
 not the best way of getting maximum-likelihood estimates on their own, is useful in
 enabling various approximate tests and confidence regions to be found in a unified
 manner.

 To examine possible departures from the simple model of proportional hazards,
 the procedure of Example 2 of Section 3 was followed, taking as in (11) the hazard
 in sample 1 to be a time-dependent multiple of that in sample 0 of the form

 exp {g + y(t- 10)} Ao(t); (43)
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 1972] Cox - Regression Models and Life Tables 197

 the arbitrary constant 10 is inserted to achieve approximate orthogonality of estimation
 of the two parameters, being chosen as a convenient value in the centre of the range.

 A test of the global null hypothesis = y = 0 could be done via the test statistic
 (20) but is not very relevant here. Instead the log likelihood (15) was computed

 TABLE 2

 Main quantities for the test of the null hypothesis for the data of Table 1

 "Failure" time Risk population
 Multiplicity

 Sample 0 Sample 1 No. in No. in r(i) A(i) m(i)
 sample 0 sample 1

 23 23 6 1 7 0-1429 2
 22 22 7 2 9 0-2222 2

 17 10 3 13 0-2308 1
 16 11 3 14 0-2143 1

 15 11 4 15 0-2667 1
 13 12 4 16 0-2500 1

 12, 12 12 6 18 0 3333 2
 11, 11 13 8 21 0-3810 2

 10 15 8 23 0-3478 1
 8,8,8,8 16 12 28 0-4286 4

 7 17 12 29 0-4138 1
 6,6,6 21 12 33 0-3636 3

 5,5 21 14 35 0-4000 2
 4,4 21 16 37 0-4324 2
 3 21 17 38 0 4474 1
 2,2 21 19 40 0 4750 2
 1,1 21 21 42 0-5000 2

 U(O) = n1- Im(j) A(2) = 10-25;

 f(0) - :g _(X) {r(i)_ -m(is} A(j){ - A(I} = 6.2570.

 directly for a grid of points in the (3, y) plane. Note that in (15) the first term is
 21 -28y; for instance, the coefficient -28 is the sum of the values (t - 10) over the
 individuals in sample 1. The logarithmic second term is simple for those time points
 at which there is a single completed time, m(t) = 1; for example corresponding to the
 time 7 there is a term in the log likelihood

 - log (17+ 12ef-37),

 the risk set at this time consisting of 17 individuals from sample 0 and 12 from
 sample 1. For points of higher multiplicity, the situation is more complicated, because
 all possible samples of size m(t) from the risk population have to be considered;
 fortunately all the samples have the same totals of the two relevant variables. For
 example, for the point 6, of multiplicity 3, we have to consider the total of all samples
 of size 3 drawn from the relevant risk population and this leads to a term

 -log (2) + (21) (1 e- + (21) (12) e2 38r+ (1) e3ff12r) (44)
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 To avoid unduly large numbers, it might often be convenient to divide each term in
 the logarithm by a suitable constant, but this was not done in the present case.

 The maximum-likelihood estimate of / when y = 0 is $ = 1 65. Thus the ratio

 of the hazards is estimated as efi = 5 21; if the distributions were exponential, this
 would be the ratio of means. Confidence limits for 3, subject to y = 0, can be obtained
 either by computing the second derivative >f(A) or directly from the log likelihood.
 With the latter method, approximate 95 per cent confidence limits for : of (0.78,2.60)
 are obtained from those values for which the log likelihood is within 1 x 1.962 = 1 92
 of its maximum value. An alternative test of the null hypothesis : = 0 is obtained

 by comparing the log likelihood at : = 0 and : = P; the difference of 7-43 corresponds
 to chi-squared of 14-9 and hence to a standardized deviate of 3-86, in reasonable
 agreement with test based on U(0).

 The inclusion of the extra parameter y provides a test of the adequacy of the
 assumption of simply related hazards. In fact the additional log likelihood achieved
 by the extra parameter, about 0 01, is small, even suspiciously small. Confidence
 limits for y are, at the 95 per cent level, approximately -0-12 and 0-14. Thus any
 marked departure from the proportional hazard model is not likely to be a smooth
 monotonic change with t. Further details of the likelihood function will not be given
 here. It is, however, quadratic to a close approximation and the particular para-
 metrization chosen achieved almost exact orthogonality.

 Finally, we consider graphical techniques, which are likely to be particularly
 useful for data more extensive than the present set. A first step is to obtain un-
 conditional estimates of the separate survivor functions by (8). For sample 1 this
 gives the ordinary sample survivor function, there being no censoring. For sample 0,
 we get the product limit estimate. Now consider estimation of the survivor functions
 under the model of proportional hazards; the constrained maximum-likelihood
 estimates of the survivor functions in the two samples are given by (37) and (38).
 Iterative solution of the 17 equations of the form (37) took in all 1 sec. on the

 CDC 6600; z was chosen separately for each risk set so that eA equalled the mean of
 eflz over the risk set in question.

 Fig. 1 shows the four estimated functions. Discrepancy with the model of pro-
 portional hazards would be shown by clear departures of the conditional from the
 unconstrained survivor curves. More elaborate versions of this analysis are certainly
 possible, in which, for instance, plots are made on a non-linear scale, or in which
 residuals from the constrained fit are formed, or in which the analysis is presented in
 tabulated rather than graphical form. The graphical analysis confirms the consistency
 of the data with a model of proportional hazards.

 Only a very brief note will be added here about alternative approaches to the
 analysis. If exponential distributions are assumed the relevant statistics are
 the total periods at risk, namely 359 weeks and 182 weeks, and the total numbers
 of failures 9 and 22 respectively. Approximate 95 per cent confidence limits for
 the log ratio of means can be obtained via the F distribution with (18,44) degrees
 of freedom. They are 0-83 and 2-43, as compared with 0-78 and 2-60 from the earlier
 analysis.

 An analysis with a step function for A0(.) is barely feasible with the limited amount
 of data available. The procedure is to divide the time scale into cells, for instance
 0-10 weeks and 11-20 weeks. Numbers of failures and periods at risk are calculated
 for each cell and hence ratios of rates derived. Provided they are consistent for the
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 different cells the ratios can then be combined into a single summary statistic with
 confidence limits. In the present example this approach does not lead to essentially
 different conclusions.

 . x (i)
 survivor X

 function

 08 00

 x~~

 x

 0 6 -

 'x
 x

 04 X

 x

 x

 x

 02 - X

 x
 x

 x~~

 I0 20 3 0
 remission time (weeks)- .

 FIG. 1. Empirical survivor functions for data of Table 1. Product limit estimate,
 - -sample 0 (6-MP); , sample 1 (control). Estimate constrained by

 proportionality: ?, sample 0; x , sample 1. For clarity, the constrained estimates are
 indicated by the left ends of the defining horizontal lines.
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 A third possibility is the use of the Weibull distribution. If we assume a common
 index in the two samples we may fit by maximum-likelihood distribution functions
 in the form

 1-exp {- (pX/K)v}, 1-exp {- (KpX)v}.

 The maximum-likelihood estimate of the index is vI= 13 and the maximized log-
 likelihoods show that this is just significantly different from v = 1I0 at the 5 per cent
 level. The explanation of the departure probably lies largely in the deficiency of small
 failure times in sample 0. Fitting of different indexes for the two samples has not
 been attempted. Approximate 95 per cent confidence limits for the log ratio of means
 can be derived in the usual way from the maximized log likelihoods and are 0-71 and
 2 10; the maximum-likelihood estimate is log(K2) = 1-31.

 The data have been analysed in some detail to illustrate a number of relevant
 points. Many applications are likely to be more complicated partly because of
 larger sample sizes and partly because of the presence of a number of explanatory
 variables.

 11. PHYSICAL INTERPRETATION OF MODEL

 The model (9), which is the basis of this paper, is intended as a representation of
 the behaviour of failure-time that is convenient, flexible and yet entirely empirical.
 One of the referees has, however, suggested adding some discussion of the physical
 meaning of the model and in particular of its possible relevance to accelerated life
 testing. Suppose in fact that there is a variable s, called "stress", and that life tests
 are carried out at various levels of s. For simplicity we suppose that s is one-dimen-
 sional and that each individual is tested at a fixed level of s. The usual idea is that
 we are really interested in some standard stress, say s = 1, and which to use other
 values of s to get quick laboratory results as a substitute for a predictor of the
 expensive results of user trials.

 Now in order that the distribution of failure-time at one level of stress should be
 related to that at some other level, the relationship being stable under a wide range
 of conditions, it seems necessary that the basic physical process of failure should be
 common at the different stress levels; and this is likely to happen only when there
 is a single predominant mode of failure. One difficulty of the problem is that of
 knowing enough about the physical process to be able to define a stress variable, i.e.
 a set of test conditions, with the right properties.

 One of the simplest models proposed for the effect of stress on the distribution
 of failure-time is to assume that the mechanism of failure is identical at the various
 levels of s but takes place on a time-scale that depends on s. Thus if 5(t; s) denotes
 the survivor function at stress s, this model implies that

 ,F(t; s) = F{g(s) t; 1}, (45)

 where g(s) is some function of s with g(l) = 1. Thus the hazard function at stress
 s is

 g(s) Ao{g(s) t}, (46)

 where A0(.) is the hazard at s = 1. In particular if g(s) = sfl and if z = logs this gives

 eflz AO(eflz t). (47)
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 This is similar to but different from the model (9) of this paper. A special set of
 conditions where (47) applies is where the individual is subject to a stream of shocks
 of randomly varying magnitudes until the cumulative shock exceeds some time-
 independent tolerance. If, for instance, all aspects of the process except the rate of
 incidence of shocks are independent of s, then (45) will apply.

 If, however, the shocks are non-cumulative and failure occurs when a rather high
 threshold is first exceeded, failures occur in a Poisson process with a rate depending
 on s. A special model of this kind often used for thermal stress is to suppose that
 failure corresponds to the excedence of the activation energy of some process; then
 by the theory of rate processes (47) can be used with A0(.) = 1 and z equal to the
 reciprocal of absolute temperature.

 As a quite different model suppose that some process of ageing goes on indepen-
 dently of stress. Suppose further that the conditional probability of failure at any
 time is the product of an instantaneous time-dependent term arising from the ageing
 process and a stress-dependent term; the model is non-cumulative. Then the hazard
 is

 h(s) AO(t), (48)

 where h(s) is some function of stress. Again if h(s) = s6, the model becomes

 ef6s Ao(t) (49)

 exactly that of (9), where again Ao(t) is the hazard function at s = 1, z = 0. One
 special example of this model is rather similar to that suggested for (46), except that
 the critical tolerance varies in a fixed way with time and the shocks are non-cumulative,
 the rate of incidence of shocks depending on s. For another possibility, see Shooman
 (1968).

 If hazard or survivor functions are available at various levels of s we might attempt
 an empirical discrimination between (46) and (48). Note, however, that if we have a
 Weibull distribution at s = 1, A0(.) is a power function and (46) and (48) are identical.
 Then the models cannot be discriminated from failure-time distributions alone. That
 is, if we did want to make such a discrimination we must look for situations in which
 the distributions are far from the Weibull form. Of course the models outlined here
 can be made much more specific by introducing explicit stochastic processes or
 physical models. The wide variety of possibilities serves to emphasize the difficulty
 of inferring an underlying mechanism indirectly from failure times alone rather than
 from direct study of the controlling physical processes.

 As a basis for rather empirical data reduction (9), possibly with time-dependent
 exponent, seems flexible and satisfactory.
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 DISCUSSION ON PROFESSOR COX'S PAPER

 Professor F. DOWNTON (University of Birmingham): Professor Cox has given us a
 paper which is characteristically both elegant and useful. One can only regret that it is
 probably true that, as he says, "the applications are more likely to be in industrial reliability
 studies and in medical statistics than in actuarial science". Benjamin (1972) gave one reason
 for this when he said that to insurance companies the estimation of future mortality was
 the least of their problems; the major parameter in life insurance has become the interest
 rate on invested money. It would appear that insurance companies are, in general,
 extremely reluctant to take on special short-term risks, where the methods of this paper
 could be applied. One would have thought, however, that these methods could be used in
 non-life insurance. Would it be too outrageous to suggest that the recent failures in motor
 insurance would not have occurred if the companies concerned had read, applied and
 drawn the correct conclusions from this paper?

 However, I do not wish to discuss practical applications, but to suggest that by giving
 his paper a somewhat restrictive title Professor Cox has been too modest. He has said
 that he does not wish to explore the connection of this paper with the theory of rank
 tests, so I hope he will forgive me if I do. Basically the approach adopted here is a mixture
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 of the parametric and the non-parametric but this approach may be used to derive non-
 parametric test procedures of a more traditional kind. I will illustrate this for one class of
 problems.

 The clue lies in his remark in Example 1 of Section 3 that for the two sample problem
 the basic model implies that we are concerned with a Lehmann-type family of distributions.
 This was also the condition found by Armitage (1959) for using the Dixon and Mood
 "sign test". It seems natural to ask first how a paired comparison design would respond
 to the treatment of this paper. We assume therefore that out of n pairs of results, r specimens
 given treatment A "failed" before their paired specimens, which had been given treatment
 B. For the remaining n - r pairs the position was reversed. Then if the failure rates were
 Ao(t) and Ao(t) e, for A and B, respectively, using the conditional argument of Section 5
 of the paper, the probability, at the first failure time ti of the ith pair, that failure occurred
 to the actual individual observed is ez/I(l + en), where z = 0 or 1, according as the failure
 was of the specimen given treatment A or B, respectively. The log likelihood is then

 L(F) = r,B-n log (1 + el),

 whence

 U(f)= rL(f)= r_ neg

 a2 L(F) - neg E2 L(:)}

 -fl2 (1+efl)2 = aP2

 Thus to test the hypothesis - = 0 we have the test statistic

 4(r -n/2)2n,

 whose distribution (if 8 = 0) is, asymptotically, X2 with one degree of freedom.
 This is, of course, the "sign test" for the median and is a trivial result. However,

 paired comparisons are a special case of the randomized block design, and generalizing
 the method above yields test statistics for that situation different from those usually used.

 We will assume that we have n blocks each containing the results for p + 1 treatments,
 these results being ranked in order of preference in each block. Equivalently we may say
 that for each block we have an observation consisting of a permutation of the numbers
 0 to p, representing the treatments arranged in order of preference.

 We suppose that in the jth block the distributions underlying the ranking of the p + 1
 treatments are of the form

 1- Fi,jt) ={I -Fj(t)} ki i = O, 1, ..., p; j = 1, 2, ..,n.

 The "standard" treatment corresponding to i = 0 may be chosen arbitrarily and we
 assume ko = 1. This distributional assumption is equivalent, in Professor Cox's terms,
 to a hazard function for the ith treatment in the jth block of the form

 A(t) ei, with Pi = log, ki (Po = 0).
 We now need to use a slight generalization of the conditional argument of Section 5 to
 see that if we index the possible (p + 1)! permutations of treatments by r = 1, 2, ..., (p + 1)!
 then the conditional probability of obtaining the rth permutation may be written

 exp (i T}/(To [ITr,i

 where To = z' exp Pi and Tf,, = ( )exp Pi. The summation sign 2 denotes that in
 the summation those terms corresponding to the first I elements of the rth permutation of
 0 to p have been omitted. The conditional log likelihood of the observed results is given by

 V V(2+1) 2

 L(P) = n zfS-n log To- z nr z log T,,1,
 i=O r=1 1=1
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 where n, is the number of blocks in which the rth permutation occurs. It may be shown
 that

 Uk= = : = E n +

 where mk,t is the number of blocks in which the kth treatment (k = 1, 2, ..., p) has a rank
 of at most 1. It may also be shown that

 E ag2 )= - np(p)
 and

 Et 2 L(0) ___= no(p),

 where

 +(p) 2 1 t

 so that the information matrix is given by

 p -1 -1 ... -1

 I = n+( ) ....... ... ... .. ...

 I=n -(1)[ -1 -1 p

 with inverse

 2 1 1 ...

 I-1 = [n(p + 1) 0(p)-1 1 2 1 . .. 2
 I 1 1 ... 2

 On the hypothesis that , = 0, the test statistic

 U'PI1 U = 2[n(p + 1) +(p)]1 I Uh Uk
 h,<k

 has, asymptotically, a x2 distribution with p degrees of freedom.
 This statistic is quite different from that due to Friedman, which would usually be

 employed in this situation. As an example of its application Bradley (1968, Example 5.12.6,
 p. 127) gives data of the effect of four drugs on a person's visual acuity based on tests on
 five people. The rankings are as follows:

 Drug

 Subject 0 1 2 3

 A 2 4 1 3
 B 3 4 2 1
 C 4 3 2 1
 D 3 4 1 2
 E 4 2 1 3

 The table of the numbers mkl together with the resulting values of Uk is:

 1 2 3 Uk k

 1 0 1 2 - 35/12
 2 3 5 5 37/12
 3 2 3 5 21/12
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 This gives

 U'I-1 U = 1782/230 = 7 75,

 while the 5 per cent point of x2 with three degrees of freedom is 7X815. On the other hand
 Friedman's test for these data gave a value of 8X28 for a different approximate x2 variable
 with three degrees of freedom. These results are broadly in agreement.

 It should be pointed out that the non-parametric analysis given here also provides
 in the statistics Uk some information about whether a treatment is "good" or "bad"
 relative to the standard. By inspection of those statistics treatment 1 is "bad", whereas
 2 and 3 are "good". We can also attribute a standard error to the statistics Uk, given,
 asymptotically, by

 4[2/{n(p + 1) +(p)}].
 In the example this takes value 079. Because it is a fairly small experiment and because
 there is a high correlation between the Uk's, we need to adopt a cautious attitude in
 interpreting this standard error.

 In principle this approach may be extended to deal with ties and/or with blocks (either
 incomplete or over-complete) of different sizes, although the algebra may not come out so
 neatly. By a suitable choice of "'blocks" a non-parametric test may be derived for any
 situation, in which an analysis of variance test would be appropriate on continuous
 measurements. In particular a relatively simple test emerges for the k-sample situation
 (as an alternative to the usual Kruskal-Wallis test). For k = 2 this reduces of course to
 the test given in equations (32)-(36) of the present paper. This two-sample test was earlier
 described by Professor Cox in his 1964 paper as an example of the use of exponential scores.
 In fact all the tests developed by the method I have described can be expressed in terms of
 exponential scores, illustrating the point that the use of these scores arises from the
 Lehmann alternative rather than from the exponential distribution itself.

 A rather more interesting and relatively simple non-parametric test that can be derived
 is for the equivalence of treatment effects in a balanced incomplete block experiment.
 Apart from its practical uses it is interesting because if there are only two treatments per
 block we are back again in a paired comparison situation, only this time paired com-
 parisons of the Round Robin type. For this case Professor Cox's approach leads to the
 test given by David (1963, p. 38). Thus the methods of this paper applied to traditional
 non-parametric problems enable us to put under a single umbrella apparently unconnected
 situations.

 As usual the statistical ideas that Professor Cox has discussed are of both theoretical
 interest and great practical importance. It gives me the greatest pleasure to propose the
 vote of thanks.

 Mr RICHARD PETO (Oxford University): I have greatly enjoyed Professor Cox's paper.
 It seems to me to formulate and to solve the problem of the regression of prognosis on
 other factors perfectly, and it is very pretty.

 In one detail I think that Professor Cox has not claimed the full credit that his method
 deserves. Suppose we have a single explanatory variable z and a single parameter ,B relating
 z to prognosis (i.e. to the distribution of failure time) and suppose that censoring is inde-
 pendent of z. In this situation, Professor Cox suggests in equation (18) the statistic U(O)
 for testing ,B = 0. This test statistic is not merely asymptotically efficient, it is locally most
 powerful among all rank-invariant test procedures. This is exactly true for any particular
 finite sample size, and U(O) is therefore the best conceivable rank-invariant test statistic
 for this problem.

 In the case where z is a zero-one indicator variable, the test of ,B = 0 is the two-group
 rank test of Section 7, which is the logrank test and which has already been proved to be
 of maximal local power for detecting a difference between two groups of similarly censored
 observations. However, the discovery of a rank test of maximal local power for detecting

This content downloaded from 
������������108.67.4.52 on Sun, 24 Sep 2023 19:55:22 +00:00������������� 

All use subject to https://about.jstor.org/terms



 206 Discussion on Professor Cox's Paper [No. 2,

 dependence of prognosis on a continuous variable is completely novel. We have used
 Professor Cox's regression methods in Oxford on real data and, despite appearances, they
 are computationally very quick and easy to handle, given careful programming.

 I think only that his treatment of tied ranks is unsatisfactory. From the viewpoint of
 the analysis of clinical trials, it falls between two stools. His suggested likelihood function
 for tied ranks is not exactly the correct likelihood function if time is continuous and tied
 ranks merely represent slight grouping, although the exactly correct function is horribly
 complicated. However, if Cox's suggested likelihood function is seen as merely a very
 good approximation to the proper grouped-continuous-time likelihood function, then
 it can be shown that an equally good approximation, which is much simpler, exists (see
 below).

 Now, it is not fair to complain that a paper which has been very full and interesting
 does not give all the techniques required for the analysis of clinical trials. However, it
 does seem to us at Oxford that a synthesis of Professor Cox's fully conditional regression
 and our fully permutational two-group significance testing is better than either separately.

 In a clinical trial, patients are allocated at random to receive drug A or drug B and, as
 they enter the trial, various explanatory variables are recorded; white blood count, age and
 so on. Suppose we have a vector z of information on each patient, where z1 is a zero-one
 indicator variable specifying group membership. Let P be the vector of coefficients
 relating to prognosis in exactly the manner Professor Cox has described. Professor Cox
 has suggested the following test for whether, after allowing for everything else, group
 membership affects prognosis. First, find Or, the restricted ML value of P in which Pi,
 the group membership parameter, is constrained to be zero. Then examine what Professor
 Cox calls U(O), which is the log-likelihood derivative at or with respect to the group
 membership parameter /1. Following Professor Cox, either the square root of the log
 likelihood increase when the restriction on , is lifted or U(O) is approximately normally
 distributed, and since z1 is independent of the other components of z it does not matter
 which we examine to test whether treatment matters.

 However, if this test is the heart of a clinical trial which has lasted several years, it is
 better for it to be exact than approximate. Having located the restricted likelihood
 maximum at Or, we can in fact construct a score for each subject, expressing how well he
 has done given his initial white blood count, age and so on, such that the sum of the
 scores of the subjects in group A equals U(O). The null distribution of U(O) is therefore
 that of the sum of a random selection from the finite population of our derived scores,
 and exact significance tests are therefore possible.

 Define the observed death count for subject j to be 1 or 0 according to whether the
 subject died or not, and define the expected death count for subject j to be an appropriate
 function of Or,

 E exp (or z)f E exp(r * Zk)
 i I IeRk () kERt(i)

 which equals the risk of death on a man-years basis for subject j if the explanatory variables
 affect prognosis as Ir (where for typographical reason R(t(,)) is printed Rt(i)).

 The score for subject j is now the difference between his observed and his expected
 death-counts, and the sum of the scores for one particular treatment group equals plus or
 minus U(O). The exact null distribution of U(O) is therefore that of the sum of a random
 combination of these scores.

 We have also found the calculation of observed and expected death-counts for indi-
 viduals to be good for illustrating the dependence of prognosis on a particular factor. If
 the factor is divided into a few sub-groups, and the sums of the observed and the sums
 of the expected death-counts in those sub-groups are compared, then it is easier to under-
 stand physically the apparent nature of the dependence than if we just have a few regresssion
 coefficients and significance levels to look at.
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 Finally, I would like to return to the question of how Professor Cox deals with tied
 ranks when time is continuous and tied ranks mean only that slight grouping has occurred.
 If p is a vector of coefficients and zj is the vector of explanatory variables for subject j,
 denote by ej the quantity exp (P. zj). Also, I restrict attention to one event only (consisting
 of one death or several tied deaths), and abbreviate "the sum over the risk set of" to
 "the sum of". Now, at any particular time the death rate for subject j is proportional to
 ej, so if one death only occurs the probability that it was subject j who died is ei/l e.
 What likelihood should replace ej/l e if more than one death occurs? As Professor Cox
 remarks, any relatively ad hoc modification of his procedure will deal satisfactorily with
 this problem if the ties are few in number.

 I will take the special case of two subjects, jl and j2, dying at the same recorded time:
 generalization to several deaths is straightforward. If time is continuous, the probability
 that j1 and j2 are the two subjects who die is the sum of the probability that jl dies first
 and j2 second plus the probability that j2 dies first and jl second. Call this the real
 probability;

 Preai = e3l e12 + e12 e,l
 2:e Q(e) -ej, 2:e Q(e) - ej2

 Professor Cox's suggested probability appears in his equation (22); call this Cox's
 probability;

 2e1l ej2
 C (E e)2-z e2'

 I would like to suggest a third form that the probability might take, which I call the
 rough probability;

 Prough = eil e2 2 Q( eIN)2.

 Physically, it is a matter of indifference which of the three forms we adopt. All are
 identically equal in the absence of tied ranks, and if there are tied ranks the differences
 between the three forms are two orders of magnitude less than the random variation which
 is being analysed. The rough probability is just as good an approximation to the real
 probability as Cox's probability, but all things being equal I suppose one would marginally
 prefer to use the real probability since no approximation to reality is involved. However,
 all things are not equal; the location, even given extremely efficient programming, of the
 maxima of likelihoods derived from the real probability or from Cox's probability is much
 more complex than the location of the maximum of the rough probability. For this reason,
 I believe that Professor Cox's model should perhaps be fitted in continuous time by
 maximizing the sum over all events of the logs of the rough probabilities. Susannah
 Howard has developed an algorithm which converges in powers of ten or better, and which
 is fast-the fit of five factors to 250 patients took less than a second per step on an old
 Atlas, and is, therefore, quite practicable.

 Last week, I used these methods on some clinical trial data, and while I was going over
 the results someone asked me why I was looking so pleased. I said that it was because the
 method that was being used was so neat, and she asked me to explain it. She is not a
 mathematician nor a statistician, so I described the conditional argument and left out all
 the computational details. When I had finished, she said "I can't see why you think that's
 neat. It's just common sense." I second the vote of thanks to Professor Cox because he
 has opened up new territories to common sense.

 The vote of thanks was put to the meeting and carried unanimously.

 Professor D. J. BARTHOLOMEW (University of Kent): Professor Cox's methods have
 interesting potential applications to the analysis of labour wastage. The function A(t; z)
 then represents an individual's propensity to leave as a function of his length of service.
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 The form of this function has an obvious relevance to personnel policies and it has been
 the subject of a good deal of empirical work. Forbes (1971) reviewed the application of
 life table techniques to the non-parametric estimation of the survivor function from
 censored data.

 It is well established that propensity to leave depends on many attributes of which
 sex, grade, level of skill, place of residence are among the most important. The methods
 given in this paper offer the prospect of a much more efficient estimation of these relation-
 ships than has hitherto been possible. The model of equation (9) is particularly appealing
 because of its simplicity and because of a certain plausibility which it has in the wastage
 application. The form of survivor functions is remarkably stable and this might suggest
 a common AO(t) scaled up or down by a factor depending on the explanatory variables z.
 Unfortunately there is a considerable body of empirical evidence to suggest that this is
 not the case. Survivor functions are often close to the lognormal implying that

 A(t) = t _ @ ID g ,

 where S is the standard normal density and (D its integral. Further, the parameter a appears
 to reflect the type of job concerned (e.g. professional, skilled manual) whereas variation
 in the explanatory variables listed above exert their influence through 1t. A suitable
 model might then be obtained by writing [t = z'13 in A(t). The analysis could then be
 developed using parametric maximum likelihood methods but the simplicity of the author's
 methods would be lost. It would be interesting to know whether the methods of the paper
 are robust enough to give sensible answers when the lognormal model is appropriate.
 Put another way we might ask whether it is possible to construct z'P in such a way that
 there is close agreement between the two models. Some of the z's would be the explanatory
 variables in which we are interested and others might be functions of t designed to improve
 the approximation.

 The non-parametric estimation of survivor functions when A(t) is monotonic, referred
 to in Section 2, has been extended to increasing failure rate average (IFRA) distributions.
 A review of this general problem is to appear in Barlow et al. (1972).

 Mr DAVID OAKES (Imperial College, London): I should like to remark briefly concerning
 the estimation of the distribution of failure time once an estimate ,3 of P is obtained.
 The method given in Section 8 of the paper treats AO(t) as identically zero except at points
 where failures occur. However when dealing with data in continuous time it seems more
 natural to assume that AO(t) is a slowly varying function of t. This leads to a simple
 maximum likelihood estimate of Ak, the (assumed constant) value of AO(t) between the
 failure times t(k-1) and t(k) (t(O) = 0). We obtain

 Ak = H(ri - u) exp {Izi(u)} du] ,

 where ri is the time to failure or censoring of the ith individual and H(x) is the Heaviside
 unit function. In order to obtain a good indication of the behaviour of AO(t) it will be
 necessary to apply some grouping or smoothing procedure to these estimates.

 Professor D. V. LINDLEY (University College London): For simplicity, my remarks
 are confined to the two-sample problem in continuous time. Let sample 0 have m
 observations occurring at times s1, s2, . . ., Sm (either failures or censored), and let m' (< m)
 of them be failures. The corresponding data for sample 1 are n times t1, t2, ..., t, of which
 n'(s< n) are failures. If Yi(t) are the survivor functions (i = 0, 1), fi(t) = - d,1i(t)/dt the
 corresponding density functions and As(t) the hazard rates, so that fi(t) = Fi(t) Ai(t),
 each censored value contributes a term F(t), and each failure a term Y(t) A(t), to the
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 overall likelihood (as distinct from Cox's marginal likelihood). Hence the likelihood
 function is

 mn n

 H Fo(si) H Ao(si) H .11(t1) H AMO),
 i=i1 ieFo j= 1 ieF,

 where Fi is the set of failures for sample i. If we write, with the author, Al(t) = A(t),
 so that El(t) = 0o(t)A, this becomes

 (I o(sJ) II A0(SJ) II Ao(tj)} ( IIi(tj) )
 i=1 iEieF, JeF, i1 =

 Now Ao(t), and hence %o(t), is unknown, so we should properly write AO(t I 0) and .50(t I 6)
 indicating a parametric dependence on 0, say. It is immediately apparent from the second
 set of braces that the obvious conditions for a marginal likelihood argument, namely that
 the likelihood factorizes into one part involving b, the parameter of interest, and another
 with 0, the nuisance parameter, does not obtain. So Cox's argument cannot be supported
 this way.

 Suppose we take the case AO(t) = , a constant. Then the likelihood is easily found
 to be

 e-(S+OT) Om'+n' /n

 where S = Si and T = = tj. If the prior is proportional to 0-1 +b-l, we easily
 obtain the posterior for b to be proportional to

 0n'_- (S + )sT)mn (*

 so that tb/s is F on (2n', 2m') d.f.: here s = S/m' and t = Tln'. (Notice the division by
 m', n'; not m, n.)

 However the assumption of constant hazard is not necessarily appropriate, and is
 clearly avoided in the marginal likelihood approach. But for any AO(t) there is a trans-
 formation of the time axis so that it is constant and again (*) will obtain but with S and T
 now the sums on the new time scale. Hence we can explore a range of prior estimates for
 AO(t) and see how the results are affected.

 It is worth contrasting the marginal likelihood with the integrated (with respect to 0)
 likelihood, equal to (*) times b. The former is a product of terms like b/(ai + bi+ ) or
 (ai + bi+ )-L where ai and bi refer to the numbers at risk. The numerators are at most
 different by b but the denominators are quite different since the times appear in (*) but
 not in the marginal likelihood. Special cases are worth exploring. Suppose sample 0
 has one censored value at 2, and sample 1 has a failure at 1. Then the marginal likelihood
 is b/(1 + b) referring to the single risk set at t = 1. The integrated likelihood is b/(2 + b).
 With a change of time scale the most that the latter could be is b/(1 + b), and this when
 t = 2 is identified with t = 1. The marginal likelihood is therefore very extreme, especially
 in its failure to depend on the time of censoring or failure in sample 0 whenever this
 exceeds 1.

 Mr P. W. GLASSBOROW (British Rail): I want to make a brief remark. In Section 8
 Professor Cox analyses two causes of failure and whether the causes of failure are inde-
 pendent. In real life they often are not independent and this brings us back to the beginning
 of the paper. It is unfortunate that Professor Cox uses the term "censored"; I do not
 know whether this has been used elsewhere instead of the traditional term "withdrawal".
 If you use "withdrawal" you realize it is just a type of failure, and withdrawal and failure
 are often not independent.

 The following contributions were received in writing after the meeting.

 Professor D. E. BARTON (Queen Mary College and Institute of Computer Science,
 University of London): My feeling is that Professor Cox understates the importance of
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 Kaplan and Meier's result that the product-limit estimate is the maximum likelihood one
 and, conversely, is too kind to those who find the analytic problems in specifying the family
 of all possible distributions. As discussed in Barton (1968) there are several possible alterna-
 tive forms of estimator, and it is not immediately clear that the maximum likelihood estima-
 tor makes best use of the information available. Moreover there are effectively an infinite
 number of nuisance parameters being eliminated (that is a nuisance function: the unknown
 censoring rule). In the paper cited I show that the method of maximum likelihood gives
 more efficient estimation than the alternatives and a heuristic argument suggesting that
 it is efficient. This efficiency does seem to be a property which gives Kaplan and Meier's
 result some importance.

 Miss SUSANNAH HOWARD (Department of Biomathematics, Oxford University): Since
 Professor Cox has proposed such a satisfying method for the analysis of censored failure
 times, it seems worth while indicating how easily the computation involved can be
 performed.

 By replacing the explanatory variables zj for each individual j by zj - z, where z is
 the mean of z over all those individuals who are observed to fail, the term s(i, P in the
 full conditional log likelihood (following equation (22)) vanishes identically, giving

 kr

 L( =- log - exp {s(t) 3}

 in either discrete or continuous time. The notation here is as in Section 6 of the paper,
 but with z now equalling 0. If there are ties, L and its first and second derivatives can be
 computed by exploiting their "symmetric function" properties in the following way.

 Let ej be the exponential weight exp {zj P} for the jth individual, and, for 1 < s, -9 <p,
 define

 xei = zei ei, yej = zej z,j ej.

 For any risk set R and any integer m, define a(.R; m), b(QJ; e; m), c(QJ; ., r; m) and
 d(-q; e, r1; m), for 1 < s, <p, by recursion on S:

 (i) If S = 0,

 a(-q; m) = So,
 and

 bQt; {; nm) = c(q; m in) = d(PJq; m in) = 0 for all m.

 (ii) If R+ = J u {j}, with j R,

 a(-q+; m) = a(-q; m)+e,a(-q; mr-1),

 b(-q+; e; m) = b(-q; e; m) + ej b(?q; e; m-1) + xei a(.R; m),

 c(-q+; m i) = c(-q; m) i)+e,c(-q; ,ri; mi-1)+y,j a0q; m),
 d(-q+; m i) = d(-q; m) ej)+ejd(-q;; { - m1-)+xejb(-q; -9; m)+x,j b(-q; e; m)

 for all m.

 Then
 k

 L =- logai where ai = a(QJ(t(i)); m(j)),

 aL k
 =-bei where bi = b(t?(t(()); e; m(in- )/ai

 and

 a2 L k
 - = I f ce{Ci- bei ,
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 where

 cenRi = {c(_qt(ti>));,r; m(X) -1) + d(Rt(t(>) ;,r; m(X) -2)}Iai.
 Now if we consider the times of censoring or observed failure in reverse chronological

 order, the risk set R increases steadily. So after first defining arrays A(m), B(e, m),
 Qe, -9, m) and D(e, -9, m) according to (i), with e, -9 and m within the following bounds

 A(m) 0 <mAm < j

 B(e, m) 1 < p < 0 K, 0 , m" -1 where mQ = max {m()I 1i < k},

 D(e, -9, m) I 1 <- <A1p9 0 <m <m,,- 2J
 then as each new individual joins the risk set the corresponding values in the arrays can
 be computed according to (ii). Thus at each failure time t(i) all the terms needed for
 computing L and its derivatives are already known. Moreover, at any time t, in the bounds
 given above, mO0 may be replaced by mt = max {m(i) I t(i) < t}.

 This simple procedure can be programmed in a way which allows for flexibility, so
 that one can choose whether or not to use approximations for the second derivatives, or
 even for L itself. If there are not too many data (say, up to 200 individuals with not more
 than 5 parameters to be fitted), maximization of the full conditional log likelihood is
 feasible without resorting to approximations and, in situations where time is genuinely
 discrete, as one might find in certain types of life-testing, it is better to fit the logistic model
 exactly. However, in analysing a large clinical trial with "ties" due to slight grouping,
 approximations such as the "rough" probability which Richard Peto has suggested would
 still seem preferable.

 Professor B. BENJAMIN (Civil Service College): It is not quite true that actuaries are
 only concerned with situations in which sampling errors are insignificant. Many of them
 are involved in follow-up studies of special groups (e.g. those with impairments) or with
 non-life investigations which are analogous to reliability trials. The actuary is moreover
 not only interested in the probability of surviving t years, or the expectation of life, or the
 expected number of "failures" in a specified period. He is interested in the shape of the
 life table. He is a collector of shapes and part of his special skill lies in his experience of
 and recognition of typical shapes. My approach to the data of Table 1 is as follows.
 (1) Turn the table upside down and group in 5-week periods to reduce irregularities.
 Assuming that the failures are at the nearest integral interval and that the censored "lives"
 survived to the beginning of the interval in which they were censored, calculate the average
 exposed and thence the average death-rates mt in each interval [note that we do not wholly
 discard the censored "lives"]. (2) Plot these and draw a smooth curve through the points
 (see Fig. I) thus inferring and removing sampling fluctuations (there are tests for improving
 the efficiency of this inference-see Benjamin and Haycocks, 1971). The shape of mt is
 reminiscent of many curves with a basic exponential progression and an additional component
 of early "mortality" probably like some population life tables where m$, x being age, is
 a combination of a Gompertz (m. = Bco) and a Normal curve in early ages. It is also
 very evident without calculating errors that the two experiences are different. I have not
 seen the author's diagram. (3) Read off mt for each week and calculate first pt and then
 [PoPlP2 - Pt-1] the probability of surviving t intervals. (4) Calculate the variance of
 this probability and if necessary make a formal test of the difference between the two
 experiences. In this case, as the author agrees, the difference is overwhelmingly significant.
 There are probably weaknesses and strengths in this procedure. The author would be
 doing the actuaries a great service if he would turn to a practical review of these weaknesses
 and to an assessment of their importance in practical situations (like Table 1). Actuaries
 are willing and able to follow the mathematics especially when so lucidly expressed as in
 this paper but they need to be convinced that it is important to decision-taking.
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 For what it is worth my estimates for the proportion surviving 5 and 10 weeks respec-
 tively are (variance in brackets)

 Sample I 0-649 (0-0155) 0-358 (0 0569),

 Sample 0 0-923 (0 0040) 0 753 (0-0145).

 May I also stress, as elsewhere (Benjamin, 1972), that no actuary would recommend
 action on any experiment for which significance could be demonstrated only after great
 mathematical strain. Most important changes stick out like a sore thumb.

 0*40
 Sample I

 0-30

 mt

 0-20

 Sample 0

 0.10/

 0 S 10 15 20
 Weeks

 FIG. I

 Dr JOHN J. GART (National Cancer Institute): In 1958 Professor Cox presented an
 elegant and unified approach to the analysis of binary data and now he gives a treatment
 of life tables of equal elegance and usefulness. In Section 7 he points out the formal
 identity of (27) to the test for partial association in combining 2 x 2 contingency tables.
 It follows almost as directly that the x2 test statistic for the comparison of p + 1 independent
 survival curves derived from (18) is formally identical to the Birch-Armitage statistic
 for partial association in 2 x k x (p + 1) contingency tables (Birch, 1965; Armitage, 1966).
 In the two-sample problem, it appears that valid, asymptotic methods for the point and
 interval estimation of eg are formally identical to those of the common odds ratio in
 combining 2 x 2 contingency tables (e.g. Gart, 1970). It will prove interesting to pursue
 further the possible parallels between life tables and contingency tables. Can the formally
 identical tests for interaction in higher dimensional contingency tables be used to test the
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 plausibility of the proportional hazard rate model? Will the proportional hazard rate
 model methods prove as robust as the logistic model methods for contingency table
 analyses? Once again Professor Cox has provided a simple, coherent framework within
 which such questions can be resolved.

 Drs L. D. MESHALKIN and A. R. KAGAN (World Health Organization): We congratu-
 late the author on an extremely stimulating paper, which has relevance to epidemiological
 studies of prediction of high risk and identification of causes, as well as to clinical trials.
 We make below two points, illustrated by an example of how the power of a particular
 factor (raised blood pressure) to predict subsequent disease (death from cardiovascular
 disease) varies with the interval between its measurement and the onset of disease. We
 believe that this demonstrates further the ideals expressed by Cox.

 1. Use of a more complicated function h(z, 3). Predictors of those at high risk to
 develop ischaemic heart disease have been identified by relating initial measurements made
 on groups of subjects to their subsequent disease experience. But the predictive power of
 some factors changes with the passage of time. It is important to know the way in which
 this change takes place for a proper understanding of the disease process and its control
 and also for more adequate study design.

 An adaptation of Professor Cox's approach enables us to measure this even when
 the study includes subjects of different age, who remain in the study for varying periods
 of time and the number of subsequent disease events is small (e.g. 684 males were followed
 for not more than 10 years, aged 30-62 years at entry, with 66 cases of cardiovascular
 death).

 Our illustration (Fig. II in this Discussion) shows how the predictive power of the
 value of the systolic blood pressure decreases. Two analytical expressions were used for
 the function, h(z, /3):

 hi= (fo + P1 z) (1 -2)T,

 h2 = (fo + 1 Z)/(1 + /2 T),

 where T is a time from the initial measurement and z the value of a systolic blood pressure.
 Fig. II shows that the choice of analytical expression has not influenced the result much.

 2. A knowledge of A0Q). For a number of chronic diseases, A0Q) can be well approxi-
 mated by the function,

 A0Q) = exp {do + d1 t}

 as used, for example in de Haas (1964).

 In the above example, use of this form of function AO(t) reduces asymptotic variances
 of estimates by 10-20 per cent.

 Computer programs for the above analyses can be obtained from the Numerical
 Analysis Unit of the Division of Research in Epidemiology and Communications Science,
 of the World Health Organization, Geneva, Switzerland.

 Professor M. ZELEN (State University of New York at Buffalo): My congratulations
 to Professor Cox on presenting a very stimulating and pioneering paper. He has raised
 several points in his paper which I am certain will be the subject of much future investi-
 gation. I wish to confine my remarks to the analogy between the model discussed by
 Professor Cox and contingency tables. To simplify matters only the two-sample problem
 will be discussed and no censoring will be assumed present.

 Suppose we have (k+ 1) intervals (za_1, za] (ot = 1, 2, ..., k), (Zk, o) where z0 = 0. Also
 let there be two populations having the conditional probabilities Pi, = Ji(za)/'i(za1) for
 i = 1, 2. (Choose Zk so that there are no failures past Zk.) Then, if the event of surviving
 or not surviving an interval is only considered for analysis, the comparison of the two
 populations is formally the same (as Professor Cox has noted) as comparing several 2 x 2
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 contingency tables. The test statistic depends on the alternative hypothesis whether the

 odds ratio 0,, = ql,p2,jq2apla for the cth table are the same or possibly different. If 0A, = 0
 for all u, then the appropriate test statistic is the one discussed by Cochran (1954) and
 Mantel and Haenzel (1959). Alternatively, if a are not all equal the test statistic would be

 ______ Predictive power

 I-d-Confidence intervals

 1-10 \ (two standard deviations)

 1.0 h
 0 \ \ h2

 080 \

 ') h2\
 ? 0*70
 0

 0-60
 Vu \

 -~0*50.

 0*40

 0*30 ::,-

 h2- ho--
 0-20 /-
 0.10

 10 20 30 40 50 60 70 80 90 100 1O 120
 Time in months

 Fig. II. Predictive power of initial systolic blood pressure as a function of time from
 initial measurement.

 Predictive power is measured by:

 log10 h(xl)/h(x2),

 where h = h(x) is a factor which shows how many times the risk of an individual with a
 measurement value of x is more than the risk for the average individual of his age, and
 xl(x2) is the value of measurement such that one-quarter of the whole population of
 his age has bigger (lower) values of x.

 different, cf. Zelen (1971). For example, if the two populations have exponential distri-
 butions (SF(t) = exp - Ai t), we have

 = [{1-exp (-A1l /A)}/(l-exp (-A2A.)}] exp-(A2-A1) \A,

 where A\, = Za- z-. Thus the a will not be the same (provided A1 X A2) unless the intervals
 are chosen to be of equal length. In general for arbitrary survival distributions where

 F2(t) = [J1(t)]P, the same result will hold in that the {0/a} will be different. The same
 remarks hold if the intervals are chosen to coincide with the observed failure times. Thus
 the asymptotic test procedure will not in general lead to equation (27) of Professor Cox's
 paper.
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 Professor R. E. BARLOW (University of California at Berkeley): Professor Cox has
 proposed some apparently very useful procedures for analysing life test data. In a recent
 paper with Doksum (1972), we found the cumulative total time on test statistic to be very
 useful in the single sample goodness-of-fit problem for exponentiality. This statistic is

 k [I [- F(u)] du x n: "[Il-F(u)]du,

 where Fn is the empirical distribution and Xl: nX2 n <- <Xk: n are the first k order
 statistics from F. The process

 rFn-I(t)
 [I [-Fn(U)] du

 on [0, 1] also played a key role in Barlow and van Zwet (1970) where we investigated
 estimates for the failure rate assumed monotone. These statistics thus seem useful in
 life test models besides those based on the exponential distribution. Perhaps since the
 present paper is more concerned with supplementary information, total time on test

 statistics does not play such a central role. However, I would like to see a formulation
 of these problems in which the total time on test statistics might be used to advantage.

 Reference should perhaps be made to the relevant paper by Harris et al. (1950) in
 connection with step function failure rate estimators.

 Doksum (1967) also uses tests based on (32) for non-parametric two-sample life test
 problems. He shows that the Savage statistic (32) maximizes the minimum power over
 IFRA (for increasing failure rate average) distribution, F, asymptotically, for the problem
 Ho: A < 1 versus H1: A > 1 where the first sample is from F(.) and the second sample is
 from F(. /A).

 Recently, some very elegant properties of shock model processes have been discovered
 by Esary et al. (1972). Perhaps, these are now ripe for statistical analysis.

 Drs JACK KALBFLEISCH and R. L. PRENTICEt (State University of New York at Buffalo):
 We would like to raise some questions concerning the conditional likelihood in Section 5
 of this paper. Let us suppose a continuous hazard without censored observations.
 Expression (12) appears to be the conditional probability that individual i fails at t(i),
 given that a failure occurs at t(j) and given the risk at R(t(z)). Thus if individuals 1, 2, 3
 have associated covariate values zj,z2, Z3 and are observed to fail at tl, t2, t3, with t, < t2 < t3,
 then expression (12) yields

 (i) P (1 fails at t, I one failure at t, and R(tj) = {1, 2, 3})
 = exp {zj f}/13 exp {zi f};

 (ii) P (2 fails at t2 lone failure at t2 and R(t2) = {2, 3})
 = exp {Z2 P}/13 exp {zi f};

 (iii) P (3 fails at t3 lone failure at t3 and R(t3) = {3}) = 1.

 Our questions concern the combination of such statements to form the expression (13).
 If (13) is the logarithm of a conditional likelihood, then the product of (i), (ii) and (iii)
 should permit an interpretation as a conditional probability statement. The introduction
 of Section 5 appears to suggest that the distribution to be calculated is to be conditional
 on the observed order statistic. However, the conditional portion of (i), for instance, is

 the event that a failure occurs at t, and two failures occur after t, (as opposed to the
 event that failures occur at tl, t2, t3). Thus the likelihood corresponding to (13) differs
 from that arising from the permutation distribution calculated conditionally on the

 observed failure times. The permutation distribution generally involves AO(t) (fi ?0).

 t On leave from the University of Waterloo, Canada.
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 On casual reading, it appears that (13) is formed by regarding the selection of an
 individual from the risk set at each observed failure time as an independent experiment.
 The Cartesian product of the conditional probability spaces corresponding to each such
 experiment would then give a probability yielding (13) as the log likelihood of /. This
 procedure, however, defines a reference set which attaches positive probability to events
 in which the same individual fails several times. We would appreciate it if Professor Cox
 would discuss the reference set and the conditional probability statements from which
 (13) arises.

 Considering again the continuous uncensored case, it is of interest to note that the
 model (9) is invariant under the group of differentiable, monotone, strictly increasing
 transformations on survival time. This invariance permits the calculation of a marginal

 likelihood (Kalbfleisch and Sprott, 1970, or Fraser, 1968) for P. The marginal likelihood,
 the logarithm of which is given by (13), arises from the marginal distribution of the ranks.
 The continuous censored case can also be handled from the viewpoint of marginal likeli-
 hood by imposing approximations similar to those in Section 5. Again the resulting
 expression is (13). If multiplicities are allowed in the continuous case, the resulting
 marginal likelihood differs from (22) and is written

 k k

 (iv) s(i, - m(i) log Eexp {z PI.
 i=l_ i=l eR(t(j}))

 Expression (iv) seems appealing in certain special instances considered. For example,

 if n = 2 and t, = t2 is observed with corresponding covariate values z1 and Z2, then (iv)
 has a unique maximum at P = 0 unless zl = Z2. Expression (22), however, reduces
 identically to zero in this case, indicating that no one value of P is to be preferred to any
 other. But, if z1 and Z2 differ widely it seems clear that ,B = 0 is to be favoured (provided
 the intervals for measuring survival time are not unduly large).

 In order to keep these comments relatively brief, the calculations involved in obtaining
 these marginal likelihoods have been deferred to a note now being prepared for publication.

 A final question involves the specification of the continuous model (9). Professor Cox
 suggests that a function of survival time itself may be used as a covariate in the hazard
 function. Since no assumption is made about AO(t), the hazard

 A(t, z) = Ao(t) exp {fl z}
 may be re-written as

 A(t, z) = Al(t) exp {92 t + /1 Z}
 without additional assumption. Corresponding to these two specifications, different
 conditional likelihoods (13) could be formed, which would generally give rise to different
 estimates of P. We note that the above-mentioned marginal likelihoods do not permit
 the inclusion of such time dependent covariates, and we would appreciate a discussion of
 when such covariates should be included.

 Professor NORMAN BRESLOW (University of Washington): Like some of the other
 discussants I too was puzzled by the conditional likelihood of Section 2. I would like to
 suggest an alternative approach to the estimation of P and AO which leads to equation (14)
 and also to a simpler estimate of the underlying survival distribution than is provided by
 equations (37) and (38). This approach is motivated in part by the discussion of Kalbfleisch
 and Prentice. However it differs from both their arguments and those of Cox in that
 simultaneous estimation of P and AO is achieved through consideration of a joint likelihood
 function involving both sets of parameters.

 One of the methods of deriving the Kaplan-Meier estimate in a maximum likelihood
 (ML) framework is to restrict attention to distributions having a hazard function which is
 constant between the distinct observed uncensored failure times, i.e.

 AO(t) = Ai for t(i_1) < t t(j), i = 1, ..., k.
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 This is also the starting point from which Granander (1956) derives ML estimates in the
 class of distributions with monotone hazard functions. Writing down the joint likelihood
 for Cox's model with Ao as defined above, and adopting Kalbfleisch and Prentice's convention
 of considering all censored observations as censored at the preceding uncensored failure
 time, it turns out that the values of p and Ai which simultaneously maximize the likelihood
 are given by setting Cox's equation (14) to 0 to find A and by

 Ls m(>/((z)t(i-,)) exp (zi,)
 leR(t(ff) )

 Hence the estimate of the cumulative hazard

 A(t) =-log -(t) = JA(u) du

 evaluated at t(i) is

 A(t(i)) = () exp (z,
 i= 1 IC_R(t(J) )

 With , = 0 this is the form of the Kaplan-Meier estimate considered by Nelson (1969).
 To achieve an exact analogue of the Kaplan-Meier estimate, one may take

 t(j) <t
 where

 Vi = M(i/ I exp (zi A).
 IeR(t(u))

 This expression for the Vi can also be obtained as a first-order approximation to the estimate
 suggested by Cox and, as noted by them, as an approximation to the estimate derived
 from the distinct discrete time model of Kalbfleisch and Prentice.

 I have recently applied Cox's regression model to the covariance analysis of survival
 data arising from a clinical trial involving 268 patients on 5 regimens. When the estimate
 of the underlying survival distribution suggested above was compared to the more
 complicated estimate of Cox, the two were found to agree to within 0-001 at each time point.
 Even more surprising was the fact that neither departed greatly from the unadjusted

 Kaplan-Meier estimate, obtained by setting A = 0 in the expression for ^i above. This
 was true in spite of the fact that the covariate had a marked effect on survival.

 The AUTHOR replied briefly at the meeting and subsequently more fully in writing
 as follows.

 I am very grateful to all the contributors for their constructive and helpful comments.
 Many points have been made and it is not feasible to comment on them all.

 Professor Downton has discussed a number of interesting non-parametric procedures
 which have good properties when the data are derived from underlying exponential
 variates. One question here concerns whether it is practicable to test from data whether
 such tests are more appropriate than, say, those based on underlying normal variates.

 Mr Peto has made a number of very cogent points. The fact that "exact" tests can be
 based on the permutation distribution, while it does require the extra assumption that
 consoring operates equally on all groups, is important. Also his suggestion of a simpler
 approximate likelihood for the grouped case is ingenious and should certainly be noted
 by anyone proposing to use these methods, as should Miss Howard's valuable contribution
 on computational methods.

 Professors Lindley, Zelen, Breslow and Kalbfleisch and Prentice all raise questions
 about the likelihood (12). The paper is unduly cryptic over this and I agree that further
 work may be needed to clarify exactly what is being done. The essence of the argument
 seems to me to be as follows.
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 (a) If AO(t) is specified parametrically, the ordinary likelihood is used consisting,
 when the explanatory variables are independent of time, of a product of density functions
 from the individuals who fail and survivor functions from the individuals who are censored.
 This can be regarded as an integral to which all elements of time at risk contribute.

 (b) If AO(t) is arbitrary, (a) is not helpful. (Professor Lindley's remark about a trans-
 formation of the time scale is, I think, useful only when AO(t) is known.) We therefore
 consider the likelihood for a description of part of the data, namely the specification
 of those individuals who fail considering hypothetical repetitions in which the times of
 failure are fixed. The probabilities in this new random system are deduced from those in
 the original fuller specification. Each probability is conditional on what happened at the
 previous time-points and on any intervening censoring. Factors associated with non-
 occurrences in intervening time-intervals are, however, not included. This is in the spirit
 of Bartlett (1937).

 (c) This raises a number of issues.

 (i) It is assumed without proof in the paper that the usual asymptotic procedures and
 properties associated with maximum likelihood estimates and tests hold.

 (ii) Is it possible and worth while to try to recover information which for any specific
 AO(t) is contained in the gaps between failures?

 (iii) What is the loss of information about the regression coefficients involved in using

 the procedures of the paper when some parametric representation of AO(t) is in fact
 appropriate? This clearly depends on the magnitude of the regression effects present.

 Both Professors Lindley and Zelen work with formulations in which an exponential
 assumption allows use of information arising from gaps. Their results therefore differ
 from the results of the paper which, at least when the expanatory variables are independent
 of time, are invariant under monotonic transformations of the time scale, a property
 emphasized by Mr Peto; see especially Peto and Peto (1972). Incidentally a non-Bayesian
 version of Professor Lindley's main result is used at the end of Section 10 in comparing
 alternative analyses.

 Professor Breslow's interesting derivation is not, I feel, essentially different from
 what I have done. He attaches a separate unknown parameter to every gap. This is an
 oblique way of saying that the gaps contribute no information about P. His likelihood
 function has a very large number of unknown parameters and this is well known to be
 dangerous.

 In discrete time the position is in some ways more complicated. The logistic model
 used in (21) is possibly sensible for a process "really" taking place in discrete time, but is
 only a first-order approximation when the data are obtained by grouping a process in
 continuous time to which (9) applies. Putting the same point another way, if we had
 large amounts of data from the same system in two sets with greatly different grouping
 intervals, slightly different estimates would be obtained for the regression coefficients.
 This is unlikely to be a serious practical point and from this point of view there being an
 approximation anyway, use of Mr Peto's simpler function seems entirely sensible.

 Mr Oakes's suggestion appears superior to that of Section 8 of the paper.
 Professor Bartholomew has raised some interesting questions, which serve in particular

 to emphasize that a simple model in terms of hazards may not be the best way to proceed.
 Dr Meshalkin and Dr Kagan's contribution is very welcome as illustrating both a more
 complicated form of dependence on the explanatory variables and the use of a parametric
 assumption for Ao(t).

 Mr Glassborow stresses an important assumption about censoring. As to terminology,
 I think I have followed that usual in statistical papers although this may well not be ideal.
 It is worth emphasizing that the discussion of Section 9 is concerned with the possibly
 rather unusual situation where there are two or more distinct kinds of failure time, all of
 which may be observed, and not with the situation where only one kind of failure time can
 be observed on any one individual.
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 Professor Benjamin's analysis is not all that different from the one of the paper
 especially in the light of Fig. 1 (which unfortunately was not available at the meeting).
 His approach is in some ways simpler, and therefore better, than that of the paper. On
 the other hand, the regression approach deals more readily with complex problems
 involving many explanatory variables. Also in simpler problems, provided that the relation
 between the different hazards is fairly direct, the comparison between them is made concisely
 in terms of parameters with a quite immediate physical meaning. Of course I agree that
 in taking action one wants the statistical uncertainty in the narrow sense to be small,
 although there surely are situations where this is not achievable.

 I agree with Professor Barton that the difficulty in specifying the space of distributions
 involved in the maximum likelihood property of the product-limit method is not to be
 taken very seriously. On the other hand the property is analogous to that for a multi-
 nomial distribution with a very large number of cells and typical observed occupancies
 all very small, and the usual justifications for maximum likelihood are then fairly irrelevant.

 Dr Gart has raised the important possibility that a wide variety of contingency table
 techniques can be adapted. Professor Barlow mentions a number of very interesting
 recent investigations. It seems quite possible that time on test could be adapted to problems
 of this paper by working with an estimated operational time variable after preliminary
 estimation of the regression coefficients.

 Professors Kalbfleisch and Prentice have asked for clarification of the role of time-
 dependent explanatory variables. These must be either fixed functions for each individual
 or, if random, we argue conditionally on their realized values. If we were to take the same
 fixed function for each individual, e.g. t itself, the contribution would disappear from (12),
 the function having been absorbed into Ao(t). In the example we have an explanatory
 variable that is t for some individuals and zero for others.

 Finally I would like to stress that while the model (9) seems to provide a flexible and
 simple way of representing a wide range of situations it is only one such way and the
 possibility of other physically sounder or more economical models should not be over-
 looked. Further, given the model (9), the method of analysis given main emphasis here
 is only one way of proceding and the possibility of a parametric representation of AO(t)
 will often be worth consideration.
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