
Statistical Modeling: The Two Cultures by Leo Breiman

Leda Liang, Yash Nair, Zitong Yang

1 Background

Professor Leo Breiman was an incredibly distinguished statistician with a unique career. Breiman is most well
known for his work on developing random forests [1], however he initially tried to pursue more theoretical work.
After being convinced to study math over philosophy, Professor Breiman’s first academic position was teaching
probability at UCLA, which is as far as one can get from applied work within the field of statistics.

This paper on the two cultures of statistical modeling published during Professor Breiman’s retirement was
motivated by applied work and problems he encountered during his sabbatical [2]. In the time he spent working
in industry, Professor Breiman noticed the increasing complexity and size of modern datasets and problems.
This led to his frustrations with his statistical colleague favoring use of simpler data models with nice theoretical
results over more practical algorithmic models with better performance.

2 Two Cultures

naturey x

In statistics, there are two goals of learning from data:
1. Prediction - Learning how to predict for future inputs
2. Information - Learning about the nature of the underlying process
Staticians can be divided into two approaches:
1. Data modeling
2. Algorithmic modeling

2.1 Culture 1: Data Modeling

linear regression
logistic regression
Cox model, etc.

y x

In the early 2000’s when this paper was written, Professor Breiman claims that 98% of statisticians fall under
the data modeling approach. In data modeling, it is assumed that the data is generated by some model plus some
noise and the goal is to estimate parameters of the model. The model assumptions are validated by a yes or no
decision based on goodness of fit tests and residual examination.
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2.2 Culture 2: Algorithmic Modeling

unknowny x

Neural nets
Decision trees

In algorithmic modeling, it is assumed that nature is complex and data does not come from a model that can
be simply described. In this approach, the scientists goal is to use whichever algorithm appears to best predict
the output and evaluation is based on measuring predictive accuracy.

2.3 Shifting Toward Algorithmic Modeling

In modern problems, the size of data collected keeps growing. The data modeling approach is more motivated by
an academic setting. In reality, the data modeling assumptions become restrictive. In comparison, the flexibility
of algorithmic modeling makes it more useful for consulting and practical applications.

2.3.1 Example 1: The Ozone Project

The goal of the ozone project was to predict ozone levels to warn the public of days with hazardous air quality
conditions in Los Angeles. Ideally this would encourage people to reduce driving and time spent outside on such
days.

The dataset consists of measurements from dozens of weather stations across the west coast and different
layers of the atmosphere. Each weather station reports hourly readings of hundreds of variables including tem-
perature, humidity, and wind speed. When researchers tried using the data modeling approach by using large
linear regression models, too many false alarms were made.

Example 2: The Chlorine Project

The goal of the chlorine project was to predict the toxicity of a chemical compound from its mass spectra. The
chemical structure of chemical compounds can tell scientists about its toxicity. Although mass spectra can be
cheaply obtained, it requires expensive labor to analyze manually.

The dataset consists of 30,000 compounds with known chemical structure and mass spectra where the mass
spectra consists of frequencies of each molecular weight. Linear regression, one of the most popular data models,
failed in this application because the dimension was too large. However, decision tress had 95% accuracy.

3 Cons of Data Modeling

Breiman, of course, takes issue with the data modeling approach. He summarizes his primary complaint as “The
conclusions are about the model’s mechanism, and not about nature’s mechanism.” In other words, inferences
made about amodel’s parameters, say, answer questions only relating to those parameters andwill not, in general,
answer questions about the way nature works (since the model may not accurately describe nature’s mechanism).
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3.1 A Case Study: the Linear Model

This philosophy is illustrated by a consideration of the linear model:

y = b0 +
M∑

m=1

bmxm + ϵ, ϵ ∼ N(0, σ2).

While there is plenty of elegant theory that can be derived from this model (such as a variety of tests, confidence
intervals, and prediction intervals), the issue is that the model often may not accurately describe nature.

Typically, this issue is addressed by performing a goodness of fit test. Often, this is done by computing theR2

multiple correlation coefficient, and deciding that the model is accurate so long as the value is sufficiently close
to one. Breiman illustrates this through an example of an experiment designed to test gender discrimination
in salary among statistics faculty. A t-test was performed and significance detected at the 5% level, however,
the analysis raises many questions. Concerns were raised about whether or not the data available is sufficient to
answer the statistical question posed and whether or not the model accurately describes nature. Perhaps more
covariates are needed so as to (better) satisfy the linear model assumption. Perhaps there is heteroskedasticity
in the data and the simple (homoskedastic) linear model is not an accurate description of the data-generating
process. In either case, the conclusions of the study are at best questionable.

3.2 Goodness of Fit Testing and Residual Analysis

While many papers do check their modeling assumptions by using goodness of fit tests, Breiman argues that
even this is not enough to justify the use of the model.

The main qualm that Breiman has with goodness of fit testing is that most tests lack power. In particular,
most tests are “omnibus” (i.e., they are designed to at least have some power against a wide variety of alternatives);
these tests, however, lack power against particular alternatives. The consequence of this is that these goodness of
fit tests will often fail to reject, leading the research to think that his or her model accurately describes the data
when it really does not. Perhaps it is more fruitful to view Breiman’s qualm here with the relative seriousness of
errors of Type I and II. In particular, it seems that in his view, a Type II error (declaring that the model is correct,
when it actually is not) is much more serious than a Type I error (declaring that the model is incorrect, when
it actually is) since in the latter case, at least the researcher’s confidence in his or her model/results will not be
falsely bolstered. Maybe a test which controls the Type II error rate would at least, in part, address Breiman’s
qualms with the current standard of goodness of fit testing.

Residual analysis is another common way of assessing goodness of fit. However, according to Breiman,
William Cleveland (a father of residual analysis), admitted in a talk that it lacks power in situations when there
are more than four of five covariates.

3.3 Multiplicity of Data Models: Rashomon

The final problem Breiman mentions regarding data modelling is that there is a multiplicity of data models that
could equally well describe the data. In particular, consider two statisticians who fit two different models to
the same data and each of these two models passes the goodness of fit tests that each statistician runs. Which
statistician is correct? Whose model should we believe? Whose inferences should we trust? Goodness of fit tests,
beyond their lack of power, are incapable of answering this questions: they provide only “yes–no” answers to
whether a single model accurately describes the data; they do not give a principled comparison between the two
different models themselves, saying which is better than the other. Breiman illustrates this issue by referencing
the medical field, in which it is commonplace to use the Cox model, even though there may be other models
that fit the data (according to a goodness of fit test, e.g.,) just as well.
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3.4 Predictive Accuracy

As a solution (and preliminary introduction to the algorithmic modeling approach), Breiman discusses pre-
dictive accuracy as a means by which different models can be compared. In details, Breiman suggests first to
compute the predictive accuracy of each model (e.g., 1

n

∑n
i=1(yi − ŷi)

2 in regression problems where yi is the
ground truth and ŷi is the prediction for the ith unit) and then to select the model with the lower value. It is
possible that there is significant noise in the true response yi given the covariates xi in which case the predictive
accuracy of even “good” models will be small. However, from the viewpoint of comparison this is not a problem:
all that matters it the relative accuracy of two different models, even if the predictive accuracy of the “better”
model is small it will still (typically) be greater than that of a “worse” model.

An import observation is that if this measure of predictive accuracy is computed on the data on which
the model was trained, then the estimate of predictive accuracy can be heavily biased. In such a case, Breiman
suggests two commonly used approaches in the machine learning community for debiasing the estimate: 1. eval-
uating the predictive accuracy/loss on a held-out test set, or 2. computing the cross-validation estimate of accu-
racy/loss. Using these tools, one can more accurately assess the true predictive accuracy of various models, and
hence compare them more readily.

4 Pros and Cons of Algorithmic Modeling

Algorithmic modeling emerged in the mid-1980s, marked by the development of powerful algorithms such as
random forests and neural networks. This era saw the formation of a vibrant new research community compris-
ing young computer scientists, physicists, engineers, and a few pioneering statisticians. Publications primarily
appeared in venues like Neural Information Processing and Journal of Machine Learning Research, marking a shift in
the discourse surrounding statistical modeling.

4.1 Theoretical Aspects of Algorithmic Modeling

Algorithmic modeling, especially supervised learning, is intrinsically a statistical phenomenon. A key insight
is that low training error, combined with a dataset size exceeding the number of ’degrees of freedom’, tends to
yield low test error. This relationship is crucial for understanding the effectiveness of machine learning models.

The following equation encapsulates this idea:

Pr
S∼D|S|

|TestD(f)− TrainS(f)| ≤

√
log |F |+ log 1

δ

|S|
for all f ∈ F

 > 1− δ

Discussion on the p > n Scenario:There has been significant discourse around the failure of these principles
in scenarios where feature dimensions exceed sample size (the p > n scenario), particularly in deep learning.
However, these challenges can be mitigated with appropriate techniques.

4.2 Three Lessons from Algorithmic Modeling

• Rashomon: The Rashomon effect emphasizes the existence of multiple good models leading to similar
outcomes, highlighting the complexity and richness of modeling.

• Occam: Occam’s Razor poses a conflict between simplicity and accuracy in model selection. Simplicity
often comes at the cost of reduced accuracy.

• Bellman: Bellman’s principle touches on the dimensionality issue in data modeling. While high dimen-
sionality can enhance prediction, it also complicates the model.
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4.3 Statistical Modeling: AThird Culture

The third culture in statistical modeling deviates from previous ones by emphasizing the functional capabilities
of models, such as reasoning and problem-solving, rather than solely focusing on predictive accuracy. For in-
stance, in language modeling, despite the abundance of data, what matters more is the model’s ability to solve
complex problems like the Riemann hypothesis.

In conclusion, the evolution of statistical modeling into these three distinct cultures highlights the dynamic
nature of the field. As data and computational capabilities expand, our understanding and utilization of statis-
tical models also evolve, leading us to rethink fundamental concepts and approaches.

5 Reflection

The key perceptions to takeaway from this paper is that statisticians should not let the restrictive models of the
data modeling approach to prevent them from working exciting new problems. Statisticians should search for
the model that gives the best solution – either algorithmic or data models.

Professor Cox’s comment on this paper is particularly important to keep in mind. This paper has made a
caricature of the field of statistics and the divide has been portrayed very dramatically. Another key criticism
is that the argument against data modeling is mostly in the prediction setting and data models provide many
useful theoretical results for other purposes.
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