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The problem
You want to buy a 10-year life
insurance plan from Farmer’s with
a payout of $2M. Farmer’s needs
to compute the probability that
you will die within 10 years so that
they can price your insurance and
maintain a positive expected value
(with accrued interest from your
payments).

1. What is the probability that
you will die within 10 years?

2. How does this probability
change when we factor in
your specific medical
profile/risk-taking tendencies?
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In 1950, how would Famer’s have computed the probability that you’d
survive another 10 years?

Life tables calculate the probability
of survival to time t by the
proportion of the initial cohort that
survived to time t. But life tables
hide the difficulties of computing
these probabilities.

1. Censored data
2. Extrapolation beyond the age

of the oldest surviving
member

3 “Regression models and life tables" (D.R. Cox) March 17, 2024



Naive estimates

S(t) is the probability of surviving up until time t. Ti = min(T̃i, Ci) (i.e. the time of
either death or censoring, whichever comes first).

1. Ŝ1(t) =
1
n

∑n
i=1 1(Ti > t): biased downwards because there’s a smaller risk of

censoring for lower times.
2. Ŝ2 =

1
n

∑n
i=1 1(Ti > t,∆i = 1) (i.e. only look at uncensored data): biased

because dividing by n but only considering uncensored data.
3. Ŝ3(t) =

1∑
j ∆j

∑n
i=1 1(Ti > t,∆i = 1): doesn’t take into account the time

dependency of the censoring process.
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Bias of Ŝ3

1. Let F be the CDF of the failure time and G be the CDF of the censoring time.
2. P[T > t,∆ = 1] = S(t)−

∫∞
t G(u)dF (u).

3. P[T > t|∆ = 1] =
S(t)−

∫∞
t G(u)dF (u)

1−
∫∞
0 G(u)dF (u)

.

4. Subtract S(t) from both sides:

P[T > t|∆ = 1]− S(t) =

∫ t
0 G(u)dF (u)− F (t)

∫∞
0 G(u)dF (u)

1−
∫∞
0 G(u)dF (u)

. (1)

5. (1) is 0 at t = 0 and ∞. Analyzing the derivative shows that it is decreasing up to
some t∗ and then increasing between t∗ and ∞.
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Unbiased estimation of survival curves

Kaplan-Meier Curves:
1.

pt = P(survive to time t+ 1|survived to time t) =

1− uncensored people who died in the interval [t, t+ 1)

uncensored people who were alive at time t

2. P(survive to time t) =
∏t−1

s=1 pt.
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Unbiased estimation of survival curves

1. Even though it’s difficult to come up with an unbiased estimate of survival, it’s not
difficult to find an unbiased estimate of the hazard rate

λ(t) = lim
∆t→0

P[t ≤ T̃ < t+∆t|T̃ ≥ t]

∆t
.

2. In continuous time,

lim
∆t→0

P[t ≤ T < t+∆t,∆ = 1|T ≥ t]

∆t
= lim

∆t→0

P[t ≤ T̃ < t+∆t|T̃ ≥ t]

∆t
.
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Unbiased estiamtion
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Unbiased estimation of survival curves

Kaplan Meier curves
1. Fix the issue of censoring
2. Still can’t project probabilities

beyond the time of death for
the last living person in the
cohort.

3. Can’t consider other factors
(i.e. heart disease, riding a
motorcycle, etc.).
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Hypothesis testing

Suppose that we wish to determine the effect of age on the risk of dying from breast
cancer using the following data:
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Hypothesis testing

Prior to the Cox model, the standard method would have been through a log-rank test.
1. Split into two groups greater than 60 and less than 60.
2. Suppose that the means are the same and the expected numbers of deaths are

E>60 and E<60. The observed deaths are O>60 and O<60.
3. The statistic of interest is (O>60 − E>60)

2 + (O<60 − E<60)
2 = 6.92.

4. The variance of this statistic is 2.17.
5. The statistic L = 6.92/2.17 = 3.19, and a χ2 table will give a p-value of 0.07
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Hypothesis testing

The problems with a test like this:
1. It ignores the exact ages of death by splitting into just two groups of < 60 and

> 60.
2. It is unlikely that there is a turning point for breast cancer at age 60: more likely

the probability of dying from breast cancer depends continuously on age.

12 “Regression models and life tables" (D.R. Cox) March 17, 2024



Hazards

1. For an individual with
characteristics given by z, we
want to assess the impact of
z on risk of death

2. Cox modelled hazards by

λ(t; z) = exp(zβ)λ0(t)

with parameters β.
3. So the probability of survival

is

exp

(
−
∫ t

0
λ(u)du

)
.
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Proportional Hazards

1. By Cox’s parameterization of a hazard, the effect of t is independent of z.
2. Conditional on one death occurring at time t, the probability that patient i died is

exp(z(i)β)∑
j still alive exp(z(j)β)

.

3. This observation gives rise to a partial likelihood

k∑
i=1

z(i)β −
k∑

i=1

log

 ∑
j∈R(ti)

exp(z(j)β)


4. Can find β by maximizing the partial likelihood.
5. Note that censored data doesn’t impact the model– it just doesn’t show up in the

denominator when calculating likelihood.
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Key assumption

The effect on the probability of
death is constant throughout time
because the difference in the log
cumulative hazard functions
remains roughly constant.
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Hypothesis testing

The CoxPH model can be used to estimate the probability that a given variable has an
effect on mortality.

1. In the breast cancer example, to estimate the effect of being 60 versus 70 on dying
from breast cancer, one can compute βage = 0.0096 with a significance of 0.01.

2. For binary variables (i.e. smokes/doesn’t smoke), the test resulting from the
CoxPH model agrees exactly with the result of a log-rank test.
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“The applications are more likely to be in industrial reliability studies and
medical statistics than in actuarial science."

1. The model is a powerful tool for assessing the effect of a given factor on the time
of failure.

2. The model doesn’t actually predict the time or probability of failure, only relative
probabilities. Therefore, it’s not necessarily useful for trying to assess the
probability of death within a certain time period.
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Back to insurance

1. Insurance doesn’t care whether eating
deep-fried Twinkies makes you more likely to
die; they only care how much extra they should
charge you for each Twinkie that you eat.

2. Since the reliability of Cox models for
probability estimation depends on the choice of
λ0(t), they can’t always be used to set
premiums. However, they might be useful for
scaling premiums.
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Back to insurance

1. Let P be the standard
premium that someone who
doesn’t eat Twinkies has to
pay.

2. Under the assumptions of the
Cox model, the premium for
someone who does eat
Twinkies should be

exp(βtwinkies)P.
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Summarizing Advantages and Limitations

Advantages
1. Semiparametric method
2. Computationally quick
3. Incorporates censoring
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Summarizing Advantages and Limitations

Advantages
1 Semiparametric method
2 Computationally quick
3 Incorporates censoring

Limitations
1. Proportional hazards assumption
2. Incorporating time-dependent

covariates loses some beauty
3. Only one failure event
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Proportional hazards assumption

Hazard at time t of a person with covariate X = Constant(t)× Constant(x)

Examples of violation*:
• Resistance to therapy: converging hazards for

treatment vs control groups
• Surgery in oncology has higher initial risk, but

better long-term prognosis while radiation
hazards start out lower, but grow over time:
crossing hazards

• Effects of a variable growing more pronounced
over time: diverging hazards

* 110/318 2019 PubMed database TJA studies and 11/58 oncology RCT with PH violations
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Alternatives

Model set-up
1. Stratification: by group or by covariate
2. Separate models for disjoint time periods
3. Time dependent covariates (Cox)

Other models
1. Weighted Cox
2. Parametric models: Accelerated Failure Time
3. Nonparametric model: Random Survival Forest; Deep-Learning Based Techniques

23 “Regression models and life tables" (D.R. Cox) March 17, 2024



Alternatives

Model set-up
1. Stratification: by group or by covariate
2. Separate models for disjoint time periods
3. Time dependent covariates (Cox)

Other models
1. Extensions: Weighted Cox
2. Parametric models: Accelerated Failure Time
3. Nonparametric model: Random Survival Forest; Deep-Learning Based

Techniques
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Stratified Cox Model

Consider the following example:

W : treatment group =

{
0 control
1 treatment

X : sex =

{
0 female
1 male

The usual Cox model of h(t|W,X) = h0(t)e
β1W+β2X assume proportional hazards ie

Treatment Hazard Ratio =
h(t|W = 1, X)

h(t|W = 0, X)
= eβ1

Sex Hazard Ratio =
h(t|W,X = 1)

h(t|W,X = 1)
= eβ2

What if the HR for male and female are not proportional in reality?
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Stratified Cox Model

Instead, we can model it as:

h(t|W,X) = hX(t)eβW

“Treatment has the same eβ HR within each level of X but the underlying hazards for
female and male are arbitrary"

Let L(x)(β) be the usual partial likelihood of the of the group X = x. Then this model
has the following simple overall partial likelihood:

L(β) =

|X|∏
x=1

L(x)(β)
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Extended Cox Model (Time Dependent Covariates)

Let T : time until death by heart attack

W : treatment group =

{
0 control
1 treatment

X(t) : # of times R crashes

has model h(t|W,X(t)) = h0(t)e
β1W+β2X(t)

1. Everyone has a hazard function that begins at h0(t)
2. Allows for hazard to vary with time
3. Estimation just as in fixed-covariate case
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Extended Cox Model (Time Dependent Covariates)

Proceed with caution!
1. Make sure not to use data from the future

▶ Ex: a measurement that comes every 3 months can be used to model 4 month
survival but not 2 month survival

2. Loss of the interpretation of: “individual i has a predicted estimated time to event
of x"
▶ Might not know what the future value of a quantity is

3. Use of some covariates may mean we cannot estimate the survival curve
▶ When the existence of some covariate implies event not occurred
▶ Ex: if we have a measurement of blood pressure, then they didn’t die yet
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Alternatives

Model set-up
1 Stratification: by group or by covariate
2 Separate models for disjoint time periods
3 Time dependent covariates (Cox)

Other models
1. Extensions: Weighted Cox
2. Parametric models: Accelerated Failure Time
3. Nonparametric model: Random Survival Forest; Deep-Learning Based

Techniques
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Random Survival Forest

1. Variation of RF, incorporating survival time and censoring information into the
splitting criterion

2. Just like RF, constructed from ensemble of binary decision trees
▶ Each tree is built from a random bootstrap sample through a node splitting process
▶ At each split, a number of covariates are considered for split candidates and one is

chosen based on which maximizes the difference between the number of people who
have reached an event vs those who have not at the time of the daughter nodes,
similar to the impurity measure used in RF

▶ Iterative split until all the uncensored events have happened

3. The hazard function estimates, used for predicting survival at a point t, from each
tree are calculated and then averaged over the whole forest to get the final estimate
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RSF vs Cox-PH: Nonlinear + interaction effects under PH
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Considerations

1. No parameter tuning
2. Simulated data assumes proportional hazards
3. Another simulation study showed superior results in RSF
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RSF vs Cox, not PH

For mortality of patients with hemorrhagic
stroke

For High-Grade Glioma after
Proton and Carbon Ion
Radiotherapy

1. Cox C-index: 62.9 %
2. RSF C-index: 61.1%
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Summarizing Advantages and Limitations

Advantages
1 Semiparametric method
2 Computationally quick
3 Incorporates censoring

Limitations
1. Proportional hazards assumption ✓

2. Incorporating time-dependent
covariates loses some beauty ✓

3. Only one failure event
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Competing Risks (Prentice et al. 1978)

Imagine we are oncologists who wants to understand not just time until death of a
patient but time until death or time until onset of second primary cancer.

One way to extend the Cox model to this scenario is to model cause-specific hazard :

hj(t|X) = h0j(t) exp(X
′βj)

1. Each cause has a different baseline hazard and HR
2. Like in the stratified case, the overall partial likelihood is the product of the j

different causes’ likelihoods
3. Interpretation of HR: cause-specific hazard had the competing risks not occurred
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