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 Sampling-Based Approaches to Calculating

 Marginal Densities
 ALAN E. GELFAND AND ADRIAN F. M. SMITH*

 Stochastic substitution, the Gibbs sampler, and the sampling-importance-resampling algorithm can be viewed as three alternative
 sampling- (or Monte Carlo- ) based approaches to the calculation of numerical estimates of marginal probability distributions.
 The three approaches will be reviewed, compared, and contrasted in relation to various joint probability structures frequently
 encountered in applications. In particular, the relevance of the approaches to calculating Bayesian posterior densities for a
 variety of structured models will be discussed and illustrated.

 KEY WORDS: Conditional probability structure; Data augmentation; Gibbs sampler; Hierarchical models; Importance sam-

 pling; Missing data; Monte Carlo sampling; Posterior distributions; Stochastic substitution; Variance compo-
 nents.

 1. INTRODUCTION

 In relation to a collection of random variables, Ui, U2,
 .. ., Uk, suppose that either (a) for i = 1, . .. , k, the
 conditional distributions U, I U) (j # i) are available, per-
 haps having for some i reduced forms Ui I Uj (j E Si C {1,
 * . . , k}), or (b) the functional form of the joint density
 of U1, U2, . .. , Uk is known, perhaps modulo the nor-
 malizing constant, and at least one U1 I Uj (j $ i) is avail-
 able, where available means that samples of U, can be
 straightforwardly and efficiently generated, given speci-
 fied values of the appropriate conditioning variables.

 The problem addressed in this article is the exploitation

 of the kind of structural information given by either (a)

 or (b), to obtain numerical estimates of nonanalytically
 available marginal densities of some or all of the U, (when
 possible) simply by means of simulated samples from avail-
 able conditional distributions, and without recourse to so-
 phisticated numerical analytic methods. We do not claim
 that the sampling methods to be described are necessarily
 computationally efficient compared with expert use of the

 latter. Instead, the attraction of the sampling-based meth-
 ods is their conceptual simplicity and ease of implemen-
 tation for users with available computing resources but
 without numerical analytic expertise. All that the user re-
 quires is insight into the relevant conditional probability
 structure and techniques for the efficient generation of
 appropriate random variates (e.g., as described by De-
 vroye 1986 and Ripley 1987).

 In Section 2, we discuss and extend three alternative
 approaches put forward in the literature for calculating
 marginal densities via sampling algorithms. These are
 (variants of) the data-augmentation algorithm described
 by Tanner and Wong (1987), the Gibbs sampler algorithm

 * Alan E. Gelfand is Professor, Department of Statistics, University
 of Connecticut, Storrs, CT 06269-3120. Adrian F. M. Smith is Professor,
 Department of Mathematics, Imperial College of Science, Technology,
 and Medicine, University of London, London SW7 2AZ, England. This
 work was carried out under the auspices of the U.K. Science and En-
 gineering Research Council Complex Stochastic Systems Initiative, which
 provided travel support to the first author and supported Susan Hills, to
 whom the authors are indebted for carrying out extensive computer
 experimentation. The second author's collaboration with Amy Racine
 provided the initial stimulation for this work, and the authors have ben-
 efited from access to related independent work by David Clayton.

 introduced by Geman and Geman (1984), and the form
 of importance-sampling algorithm proposed by Rubin
 (1987, 1988). We note that the Gibbs sampler has been
 widely taken up in the image-processing literature and in
 other large-scale models-such as neural networks and ex-
 pert systems, but that its general potential for more con-
 ventional statistical problems seems to have been
 overlooked. As we show, there is a close relationship be-
 tween the Gibbs sampler and the substitution or data-
 augmentation algorithm proposed by Tanner and Wong
 (1987). We generalize the latter and show that it is as least
 as efficient as the Gibbs sampler, and potentially more
 efficient, given the availability of distinct conditional dis-
 tributions in addition to those in (a). We note that as a
 consequence of the relationship between the two algo-
 rithms, the convergence results established by Geman and
 Geman (1984) are applicable to the generalized substitu-
 tion algorithm. The stronger convergence results estab-
 lished by Tanner and Wong (1987) require the availability
 of a particular set of conditional distributions, including
 those in (a). Both the substitution and Gibbs sampler al-
 gorithms are iterative Monte Carlo procedures, applicable
 when the kind of structural information given by (a) is
 available. When the structural information is of the kind
 described by (b), we see that an importance-sampling al-
 gorithm based on that of Rubin (1987, 1988) provides a
 noniterative Monte Carlo integration approach to calcu-
 lating marginal densities.

 In Section 3, we illustrate various model structures oc-
 curring frequently in applications, where one or more of
 these three approaches offers an easily implemented so-
 lution. In particular, we consider the calculation of Bayes-
 ian posterior distributions in incomplete-data problems,
 conjugate hierarchical models, and normal data models.
 In Section 4, we briefly summarize the results of some
 preliminary computational experience in two simple cases.
 (Detailed applications to complex, real-data problems will
 be presented in a subsequent paper.) Finally, in Section
 5 we provide a summary discussion.
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 2. SAMPLING APPROACHES

 In the sequel, we assume that we are dealing with real,
 possibly vector-valued random variables having a joint dis-
 tribution whose density function is strictly positive over
 the (product) sample space. This ensures that knowledge
 of all full conditional specifications [such as in (a) of Sec.
 1] uniquely defines the full joint density (e.g., see Besag
 1974). Throughout, we assume the existence of densities
 with respect to either Lebesgue or counting measure, as
 appropriate, for all marginal and conditional distributions.
 The terms distribution and density are therefore used in-
 terchangeably.

 Densities are denoted generically by brackets, so joint,
 conditional, and marginal forms, for example, appear as
 [X, Y], [X I Y], and [X]. Multiplication of densities is
 denoted by *; for example, [X, Y] = [X I Y] * [Y]. The
 process of marginalization (i.e., integration) is denoted by

 forms such as [X I Y] = f [X I Y, Z, W] * [Z j W, Y] *
 [W I Y], with the convention that all variables appearing
 in the integrand but not in the resulting density have been
 integrated out. Thus the integration is with respect to Z

 and W. More generally, we use notation such as f h(Z,
 W) * [W] to denote, for given Z, the expectation of the
 function h(Z, W) with respect to the marginal distribution
 for W.

 2.1 Substitution or Data-Augmentation Algorithm

 The substitution algorithm for finding fixed-point so-
 lutions to certain classes of integral equations is a standard
 mathematical tool that has received considerable attention
 in the literature (e.g., see Rall 1969). Its potential utility
 in statistical problems of the kind we are concerned with
 was observed by Tanner and Wong (1987) (who called it
 a data-augmentation algorithm) and the associated dis-
 cussion. Briefly reviewing the essence of their develop-
 ment using the notation introduced previously, we have

 [X] = [X I Y] * [Y] (1)

 and

 [Y] = f[Y I X] * [X], (2)

 so substituting (2) into (1) gives

 [X] = [X I Y] * [Y I X'] * [X']

 f h(X, X') * [X'], (3)

 where h(X, X') = f [X I Y] * [Y I X'], with X' appearing
 as a dummy argument in (3), and of course [X] [X'].
 Now, suppose that on the right side of (3), [X'] were
 replaced by [X],, to be thought of as an estimate of [X]
 -[X'] arising at the ith stage of an iterative process. Then,

 (3) implies that for some [X]1+1, [X]i+1 = f h(X, X') *

 [X']i = Ih[X]i, in a notation making explicit that Ih is the
 integral operator associated with h. Exploiting standard
 theory of such integral operators, Tanner and Wong (1987)
 showed that under mild regularity conditions this iterative
 process has the following properties (with obviously anal-
 ogous results for [Y]).

 TW1 (uniqueness). The true marginal density, [X], is
 the unique solution to (3).

 TW2 (convergence). For almost any [X]O, the se-
 quence [X],, [X]2, . . . defined by [X]i+I = Ih[X]i (i =
 0, 1, . . .) converges monotonically in L, to [Xl.

 TW3 (rate). f I[X]i - [X]I -> 0 geometrically in i.

 Extending the substitution algorithm to three random
 variables X, Y, and Z, we may write [analogous to (1) and

 (2)]

 [X] = [XI Z Y] * [Y], (4)

 [Y] = [Y, x Iz * [Z], (5)

 and

 [Z] = [ZY XI * [XI. (6)

 Substitution of (6) into (5) and then (5) into (4) produces
 a fixed-point equation analogous to (3). A new h function
 arises with associated integral operator Ih, and hence TW1,
 TW2, and TW3 continue to hold in this extended setting.
 Extension to k variables is straightforward. A noteworthy
 by-product, using TW1, is a simple proof that under weak
 conditions specification of the conditional distributions

 [Ur,r#s I Us] (s = 1, 2, . .. , k) uniquely determines the
 joint density.

 2.2 Substitution Sampling

 Returning to (1) and (2), suppose that [X I Y] and
 [Y I X] are available in the sense defined at the beginning
 of Section 1. For an arbitrary (possibly degenerate) initial
 density [X]( draw a single X(?) from [X](. Given X(?), since
 [Y I X] is available draw y(l) [Y I X(?)], and hence from
 (2) the marginal distribution of y(M) is [Y], = f [Y | X] *
 [X](. Now, complete a cycle by drawing XM - [X y(l)].
 Using (1), we then have XM - [X], = f [X I Y] * [Y],
 = f h(X, X') * [X']0 = Ih[X]O. Repetition of this cycle
 produces y(2) and X(2), and eventually, after i iterations,
 the pair (X(i), Y(i)) such that X( - X - [X], and y(i)
 Y - [Y], by virtue of TW2. Repetition of this sequence
 m times each to the ith iteration generates m iid pairs
 (X() y(i)) (j = 1, . . ., i). We call this generation scheme
 substitution sampling. Note that though we have indepen-
 dence across j, we have dependence within a given j.

 If we terminate all repetitions at the ith iteration, the
 proposed density estimate of [X] (with an analogous
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 expression for [Y]) is the Monte Carlo integration

 A m
 [ =]i E [X j y()j (7)

 m i=1

 Note that the X(i) are not used in (7) (see Sec. 2.6).
 We note that this version of the substitution-sampling

 algorithm differs slightly from the imputation-posterior
 algorithm of Tanner and Wong (1987). At each iteration

 1(1 = 1, 2, . . . , i), they proposed creation of the mixture
 density estimate, [X]l, of the form in (7), with subsequent
 sampling from [AX]1 to begin the next iteration. This mech-
 anism introduces the additional randomness of equally
 likely selection from the Y') before obtaining an X(). We
 suspect this sampling with replacement of the Y(Y) was
 introduced to allow m to vary across iterations, which may
 be useful in reducing computational effort.

 The LI convergence of [A?]i to [X] is most easily studied
 by writing f [Ai - [x]j z fC [f]i - [XJil + f [X]i -
 [X]. The second term on the right side can be made ar-
 bitrarily small as i -- oo, as a consequence of TW2. The
 first term on the right can be made arbitrarily small as m

 -o, since [A?] -A [XJi for almost all X (Glick 1974).
 Extension of the substitution-sampling algorithm to

 more than two random variables is straightforward. We
 illustrate using the three-variable case, assuming the three
 conditional distributions in (4)-(6) are available. Taking
 an arbitrary starting marginal density for X, say [X]o, we
 draw X(?) - [X]O, (Z(0)', Y(O)') - [Z, Y I X(?)], (Y(l), X(0)')
 - [Y, X I Z(P)'], and finally (X(l), Z(1)) - [X, Z I Y(l)]. A
 full cycle of the algorithm (i.e., to generate X(l) starting
 from X(?)) thus requires six generated variates, rather than
 the two we saw earlier. Repeating such a cycle i times
 produces (X(i), y(i), Z(W). The aforementioned theory en-

 d()' d Z()d Z sures that X(i) X - [X], y(i) y Y [Y], and Z-'> z
 - [Z]. If we repeat the entire process m times we obtain
 iid (X(i), y(i) Z(")) (j = 1, . . . , m) (independent between,
 but not within, j's). Note that implementation of the sub-
 stitution-sampling algorithm does not require specification
 of the full joint distribution. Rather, what is needed is the
 availability of [X, Z I Y], [Y, X I Z], and [Z, Y I Z]. Of
 course, in many cases sampling from, say, [X, Z I Y] re-
 quires, for example, [X I Y, Z] and [Y I Z], that is, the
 availability of a full conditional and a reduced conditional

 distribution. Paralleling (7), the density estimator of [X]
 becomes

 A m
 [A]i = - [X y(i), Z(i)] (8)

 m j=1

 with analogous expressions for estimating [Y] and [Z]. L,
 convergence of (8) to [X] again follows.

 For k variables, Ul, . . . , Uk, the substitution-sampling
 algorithm requires k(k - 1) random variate generations
 to complete a cycle. If we run m sequences out to the ith
 iteration [mik(k - 1) random generations] we obtain m
 iid k tuples (U,i), . . ., U(i)) (j = 1, . . .m, ), with the
 density estimator for [UsI (s = 1, . . . , k) being

 itm
 [ si ~2 [U |Ut- Ut' ; t#;s] . (9)

 2.3 Gibbs Sampling

 Suppose that we write (4)-(6) in the form

 [X] = f[XI Z, Y] [Z I Y] * [Y]

 [Y] = [Yl X, Z] * [XI Z] * [Z]

 [Z] = [Z I Y, X* [Y I XI * [X]. (10)

 Implementation of substitution sampling requires the
 availability of all six conditional distributions on the right
 side of (10), rarely the case in our applications. As noted
 at the beginning of Section 2, the full conditional distri-

 butions alone, [X I Y, Z], [Y I Z, XI, and [Z I X, Y],
 uniquely determine the joint distribution (and hence the
 marginal distributions) in the situations under study. An
 algorithm for extracting the marginal distributions from
 these full conditional distributions was formally introduced
 by Geman and Geman (1984) and is known as the Gibbs
 sampler. An earlier article by Hastings (1970) developed
 essentially the same idea and suggested its potential for
 numerical problems arising in statistics.

 The Gibbs sampler was developed and has mainly been
 applied in the context of complex stochastic models in-
 volving very large numbers of variables, such as image
 reconstruction, neural networks, and expert systems. In
 these cases, direct specification of a joint distribution is
 typically not feasible. Instead, the set of full conditionals
 is specified, usually by assuming that an individual full
 conditional distribution only depends on some "neigh-
 borhood" subset of the variables [a reduced form, in the
 terminology of (a) in Sec. 1]. More precisely, for the set
 of variables U1, U2, . Uk ,

 [U, I U1; # i] [U I Ul; E Si, i = 1, . .. , k
 (11)

 where Si is a small neighborhood subset of {1, 2, . . ., k}.
 A crucial question is under what circumstances the spec-
 ification (11) uniquely determines the joint distribution.
 The answer is taken up in great detail by Geman and
 Geman (1984), involving concepts such as graphs, neigh-
 borhood systems, cliques, Markov random fields, and
 Gibbs distributions. In all of the examples we consider,
 the joint distribution is uniquely defined. Our k's will be
 small to moderate, and the available set of full conditional
 distributions will, in fact, be calculated from specification
 of the joint density.

 Gibbs sampling is a Markovian updating scheme that
 proceeds as follows. Given an arbitrary starting set of val-
 ues U() ... , U(, we draw U(1) - [Ul I U(?), ..
 Uk(ob ~U2() [U2 U, 3) * , U(0)], UL1) [U3 I
 Ub )U( ), U 4, . . . , U(0)I, and so on, up to U(1) - [UkI

 ,.. 2, U4J1 l]- Thus each variable is visited in the nat-
 ural order and a cycle in this scheme requires K random
 variate generations. After i such iterations we would arrive

 at (U(l'), . . . , Ukl)). Under mild conditions, Geman and
 Geman showed that the following results hold.
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 GG1 (convergence). (UI'. U5')4 [U,. * . *, Ud]
 and hence for each s, U -'' dUs j [Us] as i oo. In
 fact, a slightly stronger result is proven. Rather than re-
 quiring that each variable be visited in repetitions of the
 natural order, convergence still follows under any visiting
 scheme, provided that each variable is visited infinitely
 often (io).

 GG2 (rate). Using the sup norm, rather than the LI
 norm, the joint density of (U(), . . ., U(')) converges to
 the true joint density at a geometric rate in i, under visiting

 in the natural order. A minor adjustment to the rate is
 required for an arbitrary io visiting scheme.

 GGS (ergodic theorem). For any measurable function

 T of Ul, . . ., Uk whose expectation exists,

 lim . T(UOll), . 0 . ,U(4 E(T(Ul, . ,Uk)).
 ix I 1=1

 As in Section 2.3, Gibbs sampling through m replica-
 tions of the aforementioned i iterations (mik random vari-
 ate generations) produces m iid k tuples (U(t), . . ., U?)

 (j = 1, . . .M, ), with the proposed density estimate for
 [Us] having form (9).

 2.4 Relationship Between Gibbs Sampling and
 Substitution Sampling

 It is apparent that in the case of two random variables

 Gibbs sampling and substitution sampling are identical.
 For more than two variables, using (10) and its obvious
 generalization to k variables, we see that Gibbs sampling
 assumes the availability of the set of k full conditional
 distributions (the minimal set needed to determine the
 joint density uniquely). The substitution-sampling algo-
 rithm requires the availability of k(k - 1) conditional
 distributions, including all of the full conditionals.

 Gibbs sampling is known to converge slowly in appli-
 cations with k very large. Regardless, fair comparison with
 substitution sampling, in the sense of the total amount of
 random variate generation, requires that we allow the

 Gibbs sampling algorithm i(k - 1) iterations if the sub-
 stitution-sampling algorithm is allowed i. Even so, there
 is clearly scope for accelerated convergence from the sub-

 stitution-sampling algorithm, since it samples from the cor-
 rect distribution each time, whereas Gibbs sampling only

 samples from the full conditional distributions. To amplify,
 we describe how the substitution-sampling algorithm

 might be carried out under availability of just the set of
 full conditional distributions. We see that it can be viewed

 as the Gibbs sampler, but under an io visiting scheme
 different from the natural one. We present the argument

 in the three-variable case for simplicity. Returning to (10),

 if [Y I X] is unavailable we can create a sub-substitution
 loop to obtain it by means of

 IV I'V= f IVx, Yz7 * [71 YI

 Similar subloops are clearly available to create [X Z]

 and [Z I Y]. In fact, for k variables this idea can be straight-
 forwardly extended to the estimation of an arbitrary re-
 duced conditional distribution, given the full conditionals.

 We omit the details.
 The previous analysis suggests that we could view the

 reduced conditional densities such as [Y I X] as available,
 and that we could thus carry out the substitution algorithm
 as if all needed conditional distributions were available;

 however, [Y IX] is not available in our earlier sense. Under
 the subloop in (12), we can always obtain a density esti-

 mate for [Y I X], given any specified X, say X(?). At the
 next cycle of the iteration, however, we would need a

 brand-new density estimate for [Y I X] at X = X(l. None-
 theless, suppose we persevered in this manner, making
 our way through one cycle of (10). The reader may verify
 that the only distributions actually sampled from are, of

 course, the available full conditionals, that at the end of

 the cycle each full conditional will have been sampled from
 at least once, and thus that under repeated iterations each
 variable will be visited io. Therefore, this version of the

 substitution-sampling algorithm is merely Gibbs sampling
 with a different but still io visiting order. As a result, GG1,

 GG2, and GG3 still hold (TW1, TW2, and TW3 apply
 directly only when all required conditional distributions
 are available). Moreover, there is no gain in implementing
 the Gibbs sampler in this complicated order; the natural

 order is simpler and equally good.

 This discussion may be readily extended to the case of
 k variables. As a result, we conclude that when only the
 set of k full conditionals is available the substitution-sam-
 pling algorithm and the Gibbs sampler are equivalent.
 Furthermore, we can now see when substitution sampling
 offers the possibility of acceleration relative to Gibbs sam-
 pling. This occurs when some reduced conditional distri-
 butions, distinct from the full conditional distributions, are
 available. Suppose that we write the substitution algorithm
 with appropriate conditioning to capture these available
 reduced conditionals. As we traverse a cycle, we would
 sample from these distributions as we come to them, oth-
 erwise sampling from the full conditional distributions.

 An example will help clarify this idea. One way to carry
 out the Gibbs sampler in (10) is to follow the substitution
 order rather than the natural order. That is, given an initial

 X("), Y((), and Z((), we start at the bottom line of (10), for
 example, drawing (a) y(O)' from [Y I X(?), Z(0)], (b) Z(()'
 from [Z y(O)', X(())], (c) X(?)' from [X I Z()', Y(PO)], (d)
 y(l) from [Y I X(?)', Z(0)'], (e) ZM1) from [Z y(l) X(0)'],
 and (f) X(l) from [Z y(l), Z(')]. Thus, in this case, one
 cycle using the substitution order corresponds to two cycles
 using the natural order. Suppose, however, that in addi-

 tion to the full conditional distributions, [Z I Y], say, is
 available and distinct from [Z I X, Y]. Following the sub-
 stitution order, at step (e) we would instead draw Z(0' from
 the correct distribution, [Z Y(l)].

 In Section 3, we provide classes of examples where dis-

 tinct reduced conditional distributions are available and
 classes where they generally are not. Our computaticnal
 experience shows that the acceleration in convergence that
 arises from having available distributions in addition to
 the full conditionals is inconsequential (see Sec. 4).
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 2.5 The Rubin Importance-Sampling Algorithm

 Rubin (1987) suggested a noniterative Monte Carlo
 method for generating marginal distributions using im-
 portance-sampling ideas. We first present the basic idea
 in the two-variable case. Suppose that we seek the mar-
 ginal distribution of X, given only the functional form
 (modulo the normalizing constant) of the joint density [X,
 Y] and the availability of the conditional distribution [X

 I Y] [a special case of the conditions described in (b) of
 Sec. 1].

 Suppose further (as is typically the case in applications)
 that the marginal distribution of Y is not known. Choose

 an importance-sampling distribution for Ythat has positive

 support wherever [Y] does and that has density [Y], say.
 Then, [X I Y] * [Y] provides an importance-sampling
 distribution for (X, Y). Suppose that we draw iid pairs

 (Xi, Y1) (1 = 1, . .. , N) from this joint distribution, for
 example, by drawing Y1 from [Y], and Xi from [X Y1].
 Rubin's idea is to calculate r, = [Xi, Y1]I[X1 YI] * [YW] (1
 = 1, . , N) and then estimate the marginal density for
 [X] by

 N N

 [X] = E [X I YJ] r E rT. (13)
 1=1i=

 Note the important fact that [X, Y] need only be specified
 up to a constant, since the latter cancels in (13). In other
 words, we do not need to evaluate the normalizing con-
 stant for [X, Y]. This feature is exploited in the examples
 of Section 3. By dividing the numerator and denominator
 of (13) by N and using the law of large numbers, we im-
 mediately have the following.

 RI (convergence). [X] -> [X] with probability 1 as N
 oo for almost every X.

 In addition, if [Y I X] is available we immediately have
 an estimate for the marginal distribution of Y: [] =
 EN, [Y I Xl]rJIENlr
 The successful performance of (13) typically depends

 strongly on the choice of [Y]s and its closeness to [Y].
 Thus the suggestion of Tanner and Wong (1987) in their
 rejoinder to Rubin, to perhaps use for [Y]s the density
 estimate created after i iterations of the substitution al-
 gorithm, merits further investigation. In fact, the whole
 problem of general strategies for synthesizing both the
 iterative and noniterative approaches under a fixed-budget
 (total number of random generations) criterion needs con-
 siderable further study.

 The extension of the Rubin importance-sampling idea
 to the case of k variables is clear. For instance, when k
 = 3, suppose that we seek the marginal distribution of X,
 given the functional form of [X, Y, Z] up to a constant

 and the availability of the full conditional [X I Y, Z]. In
 this case, the pair (Y, Z) plays the role of Y in the two-
 variable case discussed before, and in general we need to
 specify an importance-sampling distribution [Y, Z]s.
 Nevertheless, if [Y Z] is available, for example, we only
 need to specify [Z]s. In any case, we draw iid triples (X,,
 Y1, Z,) (1 = 1, . . . ,N) and calculate r, = [X1, Y1, Z,]I
 ([X1 Y1, Z,] * [Y,, Z1Is). The marginal density estimate

 for [X] then becomes [analogous to (13)]

 N N

 [X] = [XI Y1, Z1]r /r T. (14)

 We note that in the k-variable case the Rubin impor-
 tance-sampling algorithm requires Nk random variate gen-
 erations, whereas Gibbs sampling stopped at iteration i
 requires mik generations. For fair comparison of the two
 algorithms, we should therefore set N = mi. The rela-
 tionship between the estimators (7) and (13) may be clar-
 ified if we resample Y*, Y*, ..., Y from the
 distribution that places mass rlIlr1 at Y1 (1 = 1, . .. , N).
 We could then replace (13) with

 1 m

 [XI = - E [XI Y7], (15)
 m j=1

 so (7) and (15) are of the same form. Relative performance
 on average depends on whether the distribution of y(i) or
 Y* is closer to [Y]. Empirical work described in Section
 4 suggests that under fair comparison (7) performs better
 than (14) or (15). It seems preferable to iterate through a
 learning process with small samples rather than to draw a
 one-off large sample at the beginning [an idea that un-
 derlies much modern work in adaptive Monte Carlo; e.g.,
 see Smith, Skene, Shaw, and Naylor (1987)].

 2.6 Density Estimation

 In this section, we consider the problem of calculating
 a final form of marginal density from the final sample
 produced by either the substitution- or Gibbs sampling
 algorithms. Since for any estimated marginal the corre-
 sponding full conditional has been assumed available, ef-
 ficient inference about the marginal should clearly be
 based on using this full conditional distribution. In the

 simplest case of two variables, this implies that [X I Y]
 and the y(i) (j = 1, . m. , m) should be used to make
 inferences about [X], rather than imputing X(') (j - 1,

 nm) and basing inference on these X(i)'s. Intuitively,
 this follows, because to estimate [X] using the X(') requires
 a kernel density estimate. Such an estimate ignores the

 known form [X I Y] that is mixed to obtain [X]. The formal
 argument is essentially based on the Rao-Blackwell theo-
 rem. We sketch a proof in the context of the density es-
 timator itself. If X is a continuous p-dimensional random
 variable, consider any kernel density estimator of [X]
 based on the X(i) (e.g., see Devroye and Gyorfi 1985)

 evaluated at XO: ('). = (1ImhPm) 117=1 K[(Xo - X('))I hm],
 say, where K is a bounded density on RP and the sequence
 {hm} is such that as m -- oo, hm > 0, whereas mhP -? ?o*
 To simplify notation, set Qm,xo(X) = (1IhP)K[(Xo - X)/
 hm] so that A() - (1/m) 121 Qm,xO(X')). Define yx) -
 (1/m) 2= E(Qm,Xo(X) YYz)). By our earlier theory,
 both A(') and yx) have the same expectation. By the Rao-
 Blackwell theorem, var E(Qm,x,(X I Y)) - var Qm,xo(X),
 and hence MSE(yxQ) S MSE(AvXQ), where MSE denotes
 the mean squared error of the estimate of [XO].

 Now, for fixed Y, as rn- oo, E(Qm X0(X |Y)) >[XO0
 YJ for almost every XO, by the Lebesgue density theorem
 (see Devroye and Gyorfi 1985, p. 3). ThuJs in terms of
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 random variables we have E(Qm xo(X I Y)) 4 [X Y], So
 for large m, 0 [X0J and MSE(y(')') ; MSE([X;]i), and
 hence [X;, is preferred to &).M

 The argument is simpler for estimation of q = E(T(X))

 = f T(X) * [X], say. Here, fh = (1/m) 1m 1 T(Xji) is
 immediately seen to be dominated by ?2 = (1/m) Ej.
 E(T(X) I Yi)).

 3. EXAMPLES

 A major area of potential application of the method-
 ology we have been discussing is in the calculation of mar-
 ginal posterior densities within a Bayesian inference
 framework. In recent years, there have been many ad-
 vances in numerical and analytic approximation tech-

 niques for such calculations (e.g., see Geweke 1988;
 Naylor and Smith 1982, 1988; Shaw 1988; Smith et al.

 1987; Smith, Skene, Shaw, Naylor, and Dransfield 1985;
 Tierney and Kadane 1986), but implementation of these
 approaches typically requires sophisticated numerical an-
 alytic expertise, and possibly specialist software. By con-
 trast, the sampling approaches we have discussed are

 straightforward to implement. For many practitioners, this
 feature will more than compensate for any relative com-

 putational inefficiency. To provide a flavor of the kinds
 of areas of application for which the methodology is suited,
 we present six illustrative examples.

 3.1 A Class of Multinomial Models

 We extend the one-parameter genetic-linkage example

 described by Tanner and Wong (1987, p. 530), which in
 its most general form involves multinomial sampling,
 where some observations are not assigned to individual
 cells but to aggregates of cells (see Dempster, Laird, and
 Rubin 1977; Hartley 1958). We give the model and dis-
 tribution theory in detail for a two-parameter version,
 from which the extension to k parameters should be clear.
 Let the vector Y = (Y1, . . . , Y5) have a multinomial

 distribution mult(n, a10 + bl, a20 + b2, a3g + b3, a411 +
 b4, c(1 - 0 - )), where ai, bi : 0 are known and 0 < c
 = I - z 13=l bi-= a + a2 = a3 + a4 <1. Thus 0 and q
 range over 0 - 0, ii q 0, and 0 + z1 - 1, so a three-
 parameter Dirichlet distribution, Dirichlet(al, a2, a3),
 may be a natural choice of prior density for (0, q). From
 the form of [Y I 0, ,] * [0, q], note that obtaining the exact
 marginals [0 I Y] and [? I Y] is somewhat messy (involving
 a two-dimensional numerical integral). Nevertheless, all
 three sampling approaches we have described are readily
 applicable here by considering the unobservable nine-cell
 multinomial model for X = (X1, X2, ... , X9), given by

 mult(n, a1O, bl, a20, b2, a3?7, b3, a4q, b4, c( - 0 - 0.
 From the form of [X I 0, 'i * [0, q] we see that [0, q i XI
 Dirichlet(X1 + X3 + a1, X5 + X7 + a2, X9 + a3), and
 hence [0 I X] and [ I X] are available as beta distributions
 for sampling. Furthermore, [O I X, q7] and [V I X, 01 are
 available as scaled beta distributions, scaled to the inter-
 vals [0, 1 - ,J and [0, 1 - 01, respectively. If we let Y1

 = X1 + X2, Y2 = X3 + X4, Y3 = XS + X6, Y4 = X7 +
 X8, and Y5 = X9 and define Z = (Xl, X3, XS, X7), we
 see that specification of X is equivalent to specification of

 (Y, Z). In addition, [Z I Y, 0, q] is the product of four
 independent binomials for XI, X3, X5, and X7, given by
 [Xi I Y, 0, ,] = binomial(Yi, af0l(ai0 + bi)) (i = 1, 3, 5,
 7), which are therefore readily available for sampling.

 In the context of Section 2, we have a three-variable
 case, (0, ?, Z), with interest in the marginal distributions

 [0 1 Y], [ 1 Y], and [Z I Y]. Gibbs sampling requires [0 I
 Y, Z, i], [q I Y, Z, 0], and [Z I Y, 0, '], all of which are
 available. But in this case the reduced distributions [0 I Y,
 Z] and [i I Y, ZJ are available as well, enabling study of
 accelerated convergence. These reduced distributions sub-
 stantially simplify the Rubin importance-sampling algo-
 rithm in obtaining [0 I Y] and [i I Y]; only an importance-
 sampling distribution [Z I Y]t need be specified (e.g., a
 default choice might be binomials with chance equal to -).
 Detailed comparison of the performance of the three al-
 gorithms for a specific case of this multinomial class is
 given in Section 4.

 3.2 Hierarchical Models Under Conjugacy

 Consider a general Bayesian hierarchical model having
 k stages. In an obvious notation, we write the joint dis-
 tribution of the data and parameters as

 [Y I Oil * [01 I 02] * [02 1 03] * * [0k- I ok] * [0k], (16)

 where we assume all components of prior specification to
 be available for sampling. Primary interest is usually in

 the marginal posterior [01 I Y]. The hierarchical structure
 implies that

 [01 I Y, 011 # i] = [01 I Y, 02], i = 1

 = [O; I Oi-l, M+,], 1 < i < k -1

 = [0k I ok- 1], i = k. (17)

 Suppose that we assume proper conjugate distributions
 at each stage. This is common practice in the formulation
 of such models, except perhaps for [0k], which is often
 assumed vague. Nevertheless, conjugate priors can gen-
 erally be made arbitrarily diffuse by appropriate choices
 of hyperparameters, so this case is implicitly subsumed
 within the conjugate framework. In fact, [0k] can be vague,

 provided [0k I ok-1] is still proper and available (see Secs.
 3.4 and 3.5). Conjugacy implies that the densities in (17)
 will be available as updated versions of the respective
 priors (e.g., see Morris 1983a). Typically, no distinct re-
 duced conditional distributions are available, and Gibbs
 sampling would be used to estimate the desired marginal
 posterior densities. To clarify this latter point, consider
 the case k = 3. The six conditional distributions in (10)
 would be [01 | y, 02, 03], [02 Y, 01, 03], [03 I Y, 01, 02], [03
 I Y, 02], [01 I y, 03], and [02 I y, 0]1. The first three are
 available as in (17), the fourth is available but not distinct
 from the third, and the last two are usually unavailable.

 As a concrete illustration, consider an exchangeable
 Poisson model, which is illustrated further in Section 4
 with the reanalysis of a published data set. Suppose that
 we observe independent counts, si, ov7er differing lengths
 of time, t, (with resultant rate p, = sIt,) (i = 1, . . . t p).
 Assume [si | I = Pf(RiLt,) and that the ,i are iid from G(a,
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 ,B), with density A -leAie/l,BflF(a). The parameter a is as-
 sumed known (in practice, we might treat a as a tuning
 parameter, or perhaps, in an empirical Bayes spirit, esti-
 mate it from the marginal distribution of the si's), and ,
 is assumed to arise from an inverse gamma distribution
 IG(y, () with density 6Ye-'4l,BY+1r(y). (A diffuse version
 of this final-stage distribution is obtained by taking ( and
 y to be very small, perhaps 0.)

 Letting Y = (sl, . . ., sp), the conditional distributions
 [Aj I Y] are sought. The full conditional distribution of j
 is given by

 [Ai I Y, fi, Aijoj] = G(a + sj, (tj + 1/fl),

 j = 1, ...,p, (18)

 whereas the full conditional distribution for ,B is given by

 [f I Y1 A,. . . , Ap] = IG(y + pa, lAi + (). (19)
 No distinct reduced conditional distributions are available.

 The conditional distribution of Aj, given Y and f,, is (18),
 regardless of which or how many Ai (i # j) are given. The
 conditional distribution of f,, given Y and any subset of
 the aj's, is unavailable. Given (,O(1) A(?),) .i(O)),
 the Gibbs sampler draws -( G(a + sj, (tj + 1 f(0))-l)
 (j = 1,... ,p) andl(') -M IG(y + ap, E$' 14(l + 5) to
 complete one cycle. If we carry out m repetitions each of
 iiterations, generating (i(l), ..., (),fiz )(l - 1, .
 m), the marginal density estimate for Aj is

 [P I YI - G (a + si, t +

 j = 1, . . . , p, (20)

 whereas

 lm

 [f t Y] = -E IG(y + ap, 12(.) + (). (21) M 1=1 i

 Rubin's importance-sampling algorithm is applicable in
 the setting (16) as well, taking a particularly simple form
 in the cases k = 2, 3. For k = 3, suppose that we seek

 [01 I y]. The joint density [01, 02, 03 | Y] = [Y, 01, 02, 03]!
 [Y], where the functional form of the numerator is given
 in (16). An importance-sampling density for [01, 02, 03 1
 Y] could be sampled as [01 I Y, 021 * [03 | 02] * [02 1 Y]s for
 some [02 Y]s. As remarked in Section 2.5, a good choice
 for [02 1 Y]s might be obtained through a few iterations of
 the substitution-sampling algorithm. In any case, for 1 =
 1, . . ., N we would generate 021 from [02 1 Y]s, 031 from
 [03 021], and 01, from [01 I Y, 02l1 Calculating

 r = - [Y, 0 * 021, 031]
 z [011 I Y, 021* [030211 * [021 1 YIs

 we obtain the density estimator [01 I Y] = M[01 Y, 021]rl1
 Iri. Note that (in the terminology of Rubin) the algorithm
 in this case can be streamlined by writing the joint density
 in the numerator of r1 as [0ll Y, 0211 * [Y 0 21] * [02l1 ?3l1
 * [0311 and noting that r1 does not involve Sll o we need
 not actually generate the Sl

 Returning to the exchangeable Poisson model, the es-

 timator of the marginal density of Aj under Rubin's im-
 portance-sampling algorithm is

 [i I y G= G + s, (t, + rI ri.

 Here r1 = [Y f iB] * [f,]I[fl I Y]s where [Y I?,] is the
 product of negative binomial densities; that is,

 [Y I/3,] = IP ~~at/~a [= T ] i s!(a)(tj + fl)s,+a)

 and [Al] is the IG prior evaluated at ,. If [B Y]s is not
 obtained from the substitution-sampling algorithm, as in
 (21), an alternative choice is IG(y + ap, I Pi + 1).
 This arises because 1B Y] = E,...AP1ly[J I Y, Al, A ip]
 ~ Kfi1 Y,Al, . ., ], using ,j = pj in (19).

 3.3 Multivariate Normal Sampling

 A commonly occurring problem in combining continu-
 ous multivariate data is that often not all variables are
 observed for each experimental unit (e.g., see Dempster
 et al. 1977). If the data are sampled from multivariate
 normal populations with conjugate priors for the mean
 and covariance matrix, we have a general class of models
 where all full conditional distributions and at least some
 reduced conditional distributions are available. We illus-
 trate in the simplest case, where we assume that ( ul) (i =

 1...,n,), (v2' (j = , ,n2), and (w2 (k =1, .
 n3) are all iid N(O, A) with 0 - N(,u, E), where 0 = (?1)
 is not observable but A, and X are assumed
 known. Let U = (ui) = Pul..u2A, ad,ae sue k=u2 =(U2: in), with similar notation for
 V and W. Finally, let X = (U, V, W) and 2 x N, with
 X = N- 'Xl, where 1 is a column vector of N ls and N =

 n1 + n2 + n3. Standard calculations show that [0 I X] is
 N(q, Q), where ti = (NA-' + 1-I)-'(NA&-1x + 1-1,)
 and Q = (NA - I + E- l) - 1. With the obvious partitioning,

 q = (112)' = (Q21 Q22), the marginals [01 I X] = N(qI, QII),
 and [02 1 X] = N(q2, Q22) are available. Suppose, however,
 that V2 and W,, say, are unobserved. Let Y = (U, VI,
 W2) and Z = (V2, W,) so that X (Y, Z). As in Section
 3.1, we have a three-variable problem, here involving 01,
 02, and Z. The full conditional distributions are all normal

 and hence available. For 01 and 02, [01 I Y, Z, 02] = N(q,
 + Q12ni -'(02 - '2), QI - Q121Q-2'Q21) and [02 1 Y, Z, 01
 _ N('12 + Q211Qil(0i - 'l), IQ22 - Q211Q-iQ12). Letting
 U1 = n1'U11, with similar notation for U2, VI, V2, WI,
 and W2, we note by sufficiency that with regard to Z we
 only need the full posterior [Z7 Y, 01, 02], where zT -
 (V2, WI) and YT = (U1, U2, VI, W2). Since

 X T-= (Ut, U2, Vl, V2, WI, W2) I (01, 02)

 00 ln 1/& 0 0 \
 ~~ N 0 , O n2-l 0 ,

 N ((O)~ (ni1A3 nA 1A

 the conditional distribution [Z Y, 01, 02] iS clearly normal.
 With the full conditionals and the reduced conditionals [01
 Y, Z] and [02 |Y, Z] available, the accelerated substi-
 tution algorithm can be used to obtain [01 Y] and [02
 y1.
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 Gelfand and Smith: Sampling-Based Approaches to Calculating Marginal Densities 405

 The Rubin importance-sampling algorithm is straight-
 forward in this case. Simplifying notation by working with
 the sufficient statistic (Y, Z), suppose that we seek the

 density estimator of [01 I Y] for instance. We have [01 I Y]
 = N[01 Y, Z1, 021]rl1/rl, where

 i [Xl I Oll, 0211 * [011, 0211
 [Oll I Y, Z, 021] * [021I v, 121 * [ Z1 I Y]S

 with Xi (Y, Z1) and [Z I Y ]s a specified importance-
 sampling density. Thus for 1 = 1, . . . , N we generate

 21 - [Z I Y],021 - [021 Y, Z1], and ?11 - [?I I Y,Z1, 021].
 Again, the choice of [Z 1 Y] could be made using a few
 iterations of substitution sampling, or perhaps based on
 the intuitively appealing estimated conditional form, [Z I

 Y, 1, 021, where 01 = (n1U1 + n2V1)I(n1 + n2) and 02 =
 (n1U2 + n3W3)1(n1 + n3).

 3.4 Variance Component Models

 Bayesian inference for variance components has typi-
 cally required subtle numerical analysis or intricate ana-
 lytic approximation (e.g., as evidenced by Box and Tiao
 1973, chaps. 5 and 6). In marked contrast to such sophis-
 tication, marginal posterior densities for variance com-
 ponents are readily obtained through simple Gibbs
 sampling.

 We illustrate this for the simplest variance components

 model defined by Y,j = 0i + cii (i = 1, . ..., K, j = 1,
 J), where, assuming conditional independence

 throughout, [0, I |U, o2] = N(u, U2) and [e,, I o2] = N(O,
 2) So [Yij I 0X,i 2] = N(0i, a2).
 Let 0 = (0l, .. .,OK) and Y = (Yll, ..,YKJ) and

 assume that ,, a-, and U2 are independent, with priors
 specified by [,] - N(,uo, o2), [o2] - IG(ai, b1), and [c2]

 IG[a2, b2], where 1u0, U 2, a,, bl, a2, and b2 are assumed
 known (possibly chosen to correspond to diffuse priors).

 The joint distribution [Y, 0, ,u, ,u, Ce can be written as

 [Y I 0, 2] *[0 I U, U * [a] *[U2] * [o2], (22)
 and we follow Box and Tiao (1973, chap. 5) in focusing

 interest on [a2 1 Y] and [U2 1 y].
 From the Gibbs sampling perspective, we have a four-

 variable system, (0, ,u, o72, o2), with the following full
 conditional distributions:

 [C2 I Y, /1, 0, U2] = [U2 I |A, 0]

 - IG(al + 2K, b, + (0, - 2),
 [e2 y y, ,U, 0, 020] = [c | Y, 0]

 - IG(a2 + 2KJ, b2 + 111(Y1 -/,)2)

 [a y, 0, 7, U2] = [u I U2, 0]

 ( ao + c 22
 and

 [0# | Y, u, C, ~] u0 2u

 1 A0 _ C 1 COe2 IA
 \Jo20 + ue2 J 2 + 2 / 2 + K

 where yT = (1', . . ., Y,), Yi = (1/J) =1 Yij, 1 is a
 K x 1 column vector of ls, and I is a K x K identity
 matrix.

 Since all of these full conditionals are available, imple-
 mentation of the Gibbs sampler is straightforward. More-

 over, extensions to more elaborate variance component
 models follow precisely the same pattern, since the full
 conditional distributions for , and 0 continue to be normal,
 and those for the variance components continue to be IG.

 3.5 Normal Means Model

 The exchangeable k-group normal means model with

 different, unknown measurement variances in each group
 provides a simple example of an unbalanced class of
 models that has proved difficult to handle using empirical
 Bayes approaches to estimating posterior distributions

 (e.g., see Morris 1983b, 1987). Such models are straight-
 forwardly handled by iterative sampling approaches, as we
 saw with the Poisson example of Section 3.2 and further
 illustrate here for this classical normal means example.

 Suppose, then, assuming conditional independence

 throughout, that Yij - N(Oi, os), Oi 0 N(,u, z2), a; - IG(al,
 b,)i= 1,... ,, j = 1, ...,J), j - N(o, Cl2), and
 f2 - IG(a2, b2), where ,u, oU, a,, bl, a2, and b2 are assumed
 known (possibly chosen to reflect diffuse prior informa-
 tion). By sufficiency, we can confine attention to Y =

 {(Yi., Si;); i = 1, . . ., I}, where Yi = (1/J,)lYi, and S;
 j- Y)2. Then, if we writeO= (01, ,Oi)

 and U2 = (a2, . . 2, o-), the joint distribution of Y, 0, U2,
 ,i, and z2 takes the form

 [Yf 0, o2] * [01 |, z2] * [U2] * [p] * [z2], (23)

 where

 [Y I 0, U2] * [0 I , r2] * [u2]

 -7J [YJ 0S,u?] * [S~I o7] * [ A2] * [2].
 i=l1

 Of course, there is an obvious similarity between (22) and

 (23), but here we focus on [0i I Y] (i = 1, . . . , I). From
 the Gibbs sampling perspective, this is a (21 + 2)-variable
 problem: (0i, a;) (i = 1, . . .I, ), together with u and r2.
 To identify the forms of the full conditionals, we first note
 that

 [0 I y, U2, ,U, Z2] = N(O*, D*), (24)

 where 0i* = (J,YiT2 + 1Ua;)/(IJ,2 + Ut), D!* = U2T2/(J,T2
 + Ut), and D* = 0 (i # j). Thus the full conditional
 distributions [Oi Y, 0ij # j, U2, J, T2] (i = 1, . . ., I) are
 just the normal marginals of (24) and therefore available

 for sampling. From (23), we easily see that [U2 1 y, 0,_,a
 T2] = [v2 1 Y, 0] = LL= [U; | Yi, S;, 0,i], where [or I Yi,
 SO, 0i] = IG(ai + 2Ji, b1 + i1(Yij - Q,)2). Finally, and
 closely resembling the forms obtained in Section 3.4,

 [#iY, 0, U2, z2] = [ji I 0, z2]

 =NT28)j o> 0i z2Uf()
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 and [z2 I y 0, a2, It _ [T2 1 0, /, = IG(a2 + 2l, b2 +
 2E;(0 - ,u)2)

 3.6 An Errors-in-Variables Model

 Again, we consider a simple illustrative special case.
 Consider Y to be a vector of responses assumed related
 to levels X of a covariate according to the straight-line
 model

 Y- N ((lX) 02) 21)

 Responses are obtained at specified levels XO of the co-
 variate, but suppose that these are not the actual levels
 Xa. Rather, given the former, beliefs about the latter are
 represented by Xa - N(X0, z21). Interest centers on 0 =
 (01, 02), and to complete the distributional specification,
 suppose that we place independent conjugate priors on 0,
 a2, and T2. The joint distribution on (Y, Xa, 0, a<2, T2) then
 has the form

 [Y I Xa, 0, a2] * [Xa I T2] * [.r2] * [0] * [a2], (25)

 where again there is obvious similarity to (22) and (23).
 The Gibbs sampler requires [6 I Y, Xa, a2, z2] = [6 I Y,
 Na, a2], [a2 y Y Xa, 0, T2] [a2 1 y, Xa, 6], [r2 | y, Xa,
 0, a2] = [2l XaI, and [Xa I Y, 6, a2,9 2]. If we assume a
 normal prior for 0 and IG priors for a2 and z2, we obtain
 normal full conditionals for 0 and Xa and IG full condi-
 tionals for a2 and z2. We omit the details, which are some-
 what similar to those in Sections 3.4 and 3.5.

 4. NUMERICAL ILLUSTRATIONS

 4.1 A Multinomial Model

 We provide some preliminary insights into the relative
 performance and properties of the substitution-, Gibbs,

 Table 1. Comparison of Substitution (S) and Gibbs (G) Samplers

 Estimate (SE)
 S closer

 0 1 than G

 Cycle cdf value G S G S 0 q

 1 .05 .231 (.08) .217 (.08) .033 (.01) .044 (.01) 56% 75%
 .25 .504 (.10) .492 (.09) .177 (.04) .225 (.04) 55% 78%
 .50 .713 (.08) .706 (.08) .380 (.06) .459 (.06) 54% 80%
 .75 .873 (.05) .871 (.05) .620 (.06) .706 (.06) 51% 80%
 .95 .978 (.01) .978 (.01) .878 (.04) .926 (.03) 49% 80%

 2 .05 .067 (.04) .055 (.03) .047 (.01) .048 (.01) 56% 51%
 .25 .286 (.07) .266 (.07) .236 (.04) .241 (.04) 56% 52%
 .50 .535 (.08) .522 (.07) .478 (.06) .487 (.06) 53% 52%
 .75 .773 (.06) .768 (.05) .728 (.05) .737 (.05) 51% 52%
 .95 .956 (.02) .956 (.02) .940 (.02) .944 (.02) 51% 53%

 3 .05 .052 (.03) .049 (.03) .049 (.01) .049 (.01) 51% 50%
 .25 .254 (.06) .252 (.06) .247 (.04) .247 (.04) 51% 50%
 .50 .505 (.07) .508 (.07) .496 (.06) .496 (.06) 51% 49%
 .75 .754 (.06) .760 (.05) .746 (.05) .747 (.05) 51% 50%
 .95 .951 (.02) .954 (.02) .949 (.02) .949 (.02) 51% 50%

 4 .05 .050 (.03) .047 (.03) .050 (.01) .050 (.01) 51% 51%
 .25 .250 (.06) .249 (.06) .250 (.04) .249 (.04) 50% 51 %
 .50 .500 (.07) .505 (.07) .499 (.06) .499 (.06) 51% 51%
 .75 .751 (.06) .757 (.05) .750 (.05) .751 (.05) 51 % 51 %
 .95 .950 (.02) .953 (.02) .950 (.02) .951 (.02) 51 % 49%

 NOTE: Standard errors (SE's) are in parentheses

 and Rubin importance-sampling approaches by consider-
 ing an artificial problem based on the class of multinomial

 models discussed in Section 3.1.
 We suppose that data Y = (Y1, Y2, Y3, Y4, Y5) = (14,

 1, 1, 1, 5) are available as a sample from the multinomial
 distribution mult(22, A6 + A, Pi, 4 + 1, !(1 - 0 -
 and that the prior for (6, q) is taken to be a Dirichlet(1,
 1, 1) distribution. In the general notation of Section 3.1,

 we therefore have a, = 4, bi = 8, a2 = 4, b2 = 0, a3 -
 4, b3 = 0, a4 = X, b4 = 3, and a, = a2 = a3 = 1, with
 interest centering on the calculation of the marginal pos-

 terior densities [6 I Y] and [ I Y].
 By considering instead a split-cell multinomial, which

 in this case takes the form

 X = (XI, X2, . ,X7)

 mult(22, A0, 8, 40, A4, A, 4 , (1, - 6 -

 we can use the analysis of Section 3.1 for this special case
 of a seven-cell multinomial to construct substitution- and

 Gibbs sampling algorithms involving 0, ui, and Z = (XI,
 X5).

 As noted in Section 3.1, we can compare the two forms
 of iterative sampling. To do so, we first obtained very

 accurate numerical estimates of [6 I Y] and [t l Y] using
 techniques described by Smith et al. (1985, 1987), and
 from these obtained the true 5, 25, 50, 75, and 95 posterior
 percentile points for each parameter. Iterative cycles of
 the two samplers were then run, calibrated so that the total
 number of random variates generated was the same in both
 cases (as described in Sec. 2.4). The initialization was de-
 fined (for an arbitrary generating seed) in each case by
 taking independent samples from 0 6 U(0, 1) and q -
 U(0, 1), subject to 0 S 0 + q - 1. At each cycle, m =
 10 drawings of the parameters were then made, and from
 estimates of the form (9) estimates of the cumulative pos-
 terior probabilities corresponding to each of the five true
 percentile points for each parameter were obtained. This
 process was replicated 5,000 times, enabling us to study
 the mean estimates of the cumulative probabilities, to-
 gether with their standard errors, as well as the percentage
 of occasions on which each sampler was closest to the true
 value. A summary of the results following each of the first
 four cycles is given in Table 1.

 We note from Table 1 that initially (cycles 1 and 2) the
 substitution sampler adapts more quickly than the Gibbs
 sampler, particularly for q. By the time we reach the third
 and fourth cycles, however, the two approaches are per-
 forming indistinguishably. What is astonishing, perhaps,
 is how remarkably good their performance is. By the
 fourth cycle, using only m = 10 drawings and starting
 from a default noninformative baseline, the marginal pos-
 terior density estimators based on (8) are providing on
 average extremely accurate estimates of cumulative prob-
 abilities. Our experiences with this and other examples
 (see Sec. 4.2) suggest that satisfactory convergence with
 iterative sampling requires only a small fraction of the
 levels of random variate generation reported by Tanner
 and Wong (1987).
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 The noniterative Rubin importance-sampling algorithm

 (Sec. 2.5) requires us to choose a sampling density, [Z I
 Y]s, and then to proceed as follows, for 1 = 1, . . ., m:
 Draw Z, from [Z I Y],, i7 from [r Z, Y], and 01 from [0
 1 , Z, Y], with the latter two distributions as detailed
 previously, thus creating a triple (0,, i7, Z,). Then, cal-
 culate

 r[Y, z I 01, 17] * [01, 17]

 [?1 I 17, Z,, Y] * [71 1 Zi, Y] * rZ, I Y]s

 and form estimates [o Y] = l2m1 [r I 7, Z, Y]r1Im=1 ri
 and [ f Y] = Y-m 1 01, Z1, Y]rilIlm r.

 Table 2 shows the average cumulative posterior prob-
 ability estimates from this approach, based on 2,500 rep-
 licates of m = 40 and m = 200 and taking [Z I Y]s to be
 the product of Xl - binomial(Yl, 2) and X5 - binomial(Y4,
 2). Despite the much larger number of drawings compared
 with the iterative samplers, the estimation is rather poor.
 In general, experience suggests that the algorithm is highly

 sensitive to the choice of [Z I Y]s and that the larger one-
 off simulation is no match for iterative adaptation via small
 simulations.

 4.2 A Conjugate Hierarchical Model

 We apply the exchangeable Poisson model discussed in
 Section 3.2 to data on pump failures previously analyzed
 by Gaver and O'Muircheartaigh (1987) (reproduced here
 in Table 3), where si is the number of failures and t, is the
 length of time in thousands of hours.

 Recalling the model structure of Section 3.2 and the
 forms of conditional distribution given by (18) and (19),
 we illustrate the use of the Gibbs sampler for this data
 set, with p = 10, 6 = 1, y = 0.1, and, for the purposes
 of illustration, a = p2/(S2 - 1- IP I ti 1), with the latter
 derived by a method-of-moments empirical Bayes argu-

 ment based on E(pi) = EE(pi I X1) = a/: 5 P:

 V(p,) = VE(p, I A) + EV(pi I i)

 = (a/fl) + (a//ti) z S2 = p-1(p, - p)2.

 Figure 1 shows a selection of four marginal posterior
 densities (for X2, ; 4, 48, 29) calculated from (20) following
 a run of 10 cycles of the algorithm. In fact, three densities
 are superposed: One corresponds to m = 10, one to m
 = 100, and the third is the exact density calculated using
 techniques described by Smith et al. (1985, 1987). Even
 in the cases of 48 and 49 (chosen as worst cases from Al,

 . . ., l(), the densities are hardly distinguishable-a re-

 Table 2. Estimates From the Rubin Importance-Sampling Algorithm

 Estimates: m = 40 (200)

 cdf value 0 a1

 .05 .105 (.150) .049 (.049)
 .25 .311 (.351 ) .244 (.241 )
 .50 .521 (.537) .485 (.477)
 .75 .739(.734) .729(.714)
 .95 .939 (.932) .934 (.921 )

 Table 3. Pump-Failure Data

 Pump system s, t, p, (x 102)

 1 5 94.320 5.3
 2 1 15.720 6.4
 3 5 62.880 8.0
 4 14 125.760 11.1
 5 3 5.240 57.3
 6 19 31.440 60.4
 7 1 1.048 95.4
 8 1 1.048 95.4
 9 4 2.096 191.0
 10 22 10.480 209.9

 markable convergence from such a small number of draw-
 ings.

 5. DISCUSSION

 We have emphasized providing a comparative review
 and explication of three possible sampling approaches to
 the calculation of intractable marginal densities. The sub-
 stitution-, Gibbs, and importance-sampling algorithms are
 all straightforward to implement in several frequently oc-
 curring practical situations, thus avoiding complicated nu-
 merical or analytic approximation exercises (often
 necessitating intricate attention to reparameterization and
 other subtleties requiring case-by-case consideration). For
 this latter reason if for no other the techniques deserve to
 be better known and experimented with for a wide range
 of problems. We hope that the unified exposition at-
 tempted here will provide a general, clarifying perspective
 within which to view the work of Geman and Geman
 (1984), Rubin (1987, 1988), and Tanner and Wong (1987),
 and to evaluate its potential for other structured problems.
 For example, in addition to the model structures given in
 Section 3, the methods find immediate and powerful ap-
 plication to problems involving ordered parameters or
 change points. In future work we shall provide detailed
 and extensive numerical illustration of many such prob-
 lems.

 The preliminary computational experience reported
 here illustrates the following points. Iterative, adaptive
 sampling (substitution or Gibbs) invariably provides better
 value, in terms of efficient use of generated variates, than
 an equivalent sample-size, noniterative, one-off approach
 (Rubin), provided a suitable structure for iterative sam-
 pling exists. In problems where certain reduced condi-
 tionals are available, there is scope for accelerating the
 substitution algorithm so that it becomes more efficient
 (particularly in early cycles) than the Gibbs algorithm;
 however, the gain in efficiency is only likely to be of con-
 sequence when the number of reduced conditionals is a
 relatively large fraction of the total number of conditionals
 involved in a cycle. There are important practical problems
 in tuning monitoring and stopping-rules procedures for
 iterative sampling in large-scale complex problems; we
 shall report on these in future work as well. Finally, we
 note that even in cases where ultimate convergence of the
 iterative sampling procedures proves slow, moment or
 other information provided by a few initial cycles can be
 used to provide highly effective starting values for more
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 sophisticated numerical or analytic approximation tech-

 niques.

 [Received November 1988. Revised October 1989.]
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