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Summary. I describe the background for the paper ‘Controlling the false discovery rate: a new
and powerful approach to multiple comparisons’ by Benjamini and Hochberg that was published
in the Journal of the Royal Statistical Society , Series B, in 1995. I review the progress since
made on the false discovery rate, as well as the major conceptual developments that followed.
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1. Background

Our work on the false discovery rate (FDR), and the paper Benjamini and Hochberg (1995), has
its origins in two papers concerned with multiple testing of m hypotheses of which unknown m0
are true. First was Schweder and Spjøtvoll (1982), who suggested plotting the ranked p-values,
assessing m0 via an eye-fitted line, and rejecting the other m−m0 hypotheses. In Hochberg and
Benjamini (1990) we developed their idea into an algorithm and incorporated the estimate m0
into procedures such as Bonferroni, Holm or Hochberg.

Second was Soriç (1989), who argued forcefully against the use of uncontrolled single-hypoth-
esis testing when many are tested, and used the expected number of false discoveries divided
by the number of discoveries as a warning that ‘a large part of statistical discoveries may be
wrong’. Reading Soriç (1989) we realized that with V being the number of type I errors made,
out of the R rejected, by defining FDR−1 = E.V/=E.R/ (Fdr in Efron (2008) and earlier) we
obtain a very appealing error rate, that rather than being merely a warning can serve as a worthy
goal to control. Moreover, considering these quantities as a function of the level α at which the
individual testing is done, a plausible estimator for the FDR is Q.α/=αm0=R.α/. Indeed, the
value depends on m0, but we already had a way to estimate m0 from our previous work! To
our delight, to obtain max{α|Q.α/ � q} we could use a step-up method on the sorted series
of p-values (theorem 2 in Benjamini and Hochberg (1995)). In November 1989 we submitted a
paper named ‘A synthesis of new approaches to multiple comparisons’.

Readers of the submitted manuscript were concerned with the definition of FDR when R=0.
We then considered other possible definitions: FDR=E.V=R/, where V=R=0 when R=0, and
FDR+1 =E.V=R|R> 0/ (pFDR in Storey (2002)). We adopted the FDR because controlling it
assured weak control of the familywise error rate FWER = Pr.V � 1/ when all hypotheses are
true—a property that we considered essential for use in medical research, and a property that
the other two definitions could not enjoy.
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5 years and three journals later the paper was accepted for publication. Along the way, one
of the many attempts to prove an FDR property by induction, making use of m as an upper
bound for m0, turned into success, so we took out of the paper the adaptive stage of estimating
m0, merely noting this power increasing possibility. It was therefore no longer a synthesis of new
approaches, so the name was changed accordingly.

2. Success of the false discovery rate idea

Acceptance of the FDR idea remained slow even after Benjamini and Hochberg (1995) was
published. Our original paper, with the estimated m0, appeared only 5 years and two jour-
nals later (Benjamini and Hochberg, 2000). Other papers on the FDR by various researchers
encountered similar difficulties. The dramatic change in attitude came when genetic research
took a new dimension, in quantitative trait loci and microarrays analyses, where the number
of hypotheses tested in an experiment reached thousands. This seemed unthinkable 10 years
earlier: for example, our simulations in Benjamini and Hochberg (1995) had been criticized for
considering 4–64 hypotheses, as ‘no one uses multiple comparisons for problems with 50 or 100
tested hypotheses’. Alas, facing the new challenges, tools that balance multiplicity control and
power were needed, and FDR methodology could yield useful answers.

By the year 2000 quite a few groups of statisticians were working in the area, and results in
FDR theory, methods and applications started to flow. It became clear that the FDR is a very
intuitive concept, which adaptively spans the entire range from extreme multiplicity control to
none, depending on the data encountered. If the data justify—even in very large problems—it
is very permissive. In sparse problem it acts close to control of FWER; still the extra allowance
gives it an edge in performance (see Section 3.4). Finally, it is interpretable from different points
of view: frequentist, Bayesian, empirical Bayes and decision theory.

A full review of the FDR developments is beyond the scope of this short note. Doing injustice
to many, I follow the guidelines of the editors and outline progress and conceptual developments
in FDR research related to my own involvement.

3. Later progress

3.1. Estimation of m0 (or p0 Dm0=m)
Much research effort has gone into developing new estimation methods. Storey (2002) sug-
gested the use of #(p-values> c/=.1 − c/. In Storey and Tibshirani (2003) the cut-off point c
has been chosen via bootstrapping. Fitting different mixture models to the distribution of the
test statistics, to their p-values, or their transformed z-values, and estimating the proportion
of distribution that is attributed to values under the true null hypotheses are some directions
taken, either parametric (e.g. by Allison and co-workers), or non-parametrically (by Genovese
and Wasserman (2002) and Efron and co-workers).

It should be emphasized that, once an estimator m0 of m0 is inserted into the procedure
in Benjamini and Hochberg (1995), it is no longer guaranteed to achieve FDR control at the
desired level. Adjustments may be needed in the estimator: see Storey et al. (2004), Benjamini
et al. (2006), Gavrilov et al. (2009) and Blanchard and Roquain (2009) for modifications intro-
duced to natural estimators. Such adjustments are especially crucial under dependence and
when m0=m∼1 (including m0=m=1).

3.2. Addressing dependence
Independence of test statistics was assumed in Benjamini and Hochberg (1995). Addressing
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positive dependence by Benjamini and Yekutieli (2001) was essential in assuring users that the
simple procedure in Benjamini and Hochberg (1995) was safe to use in many situations arising
in practice. It built on the work of Sarkar (1998) and was followed by the work of Sarkar, Finner
and co-workers. The modification to general dependence is often not needed: convincing
simutheoretical evidence indicates that the same holds for two-sided z-tests with any correlation
structure (Reiner-Benaim, 2007), but the theory awaits a complete proof. Other theoretical
puzzles remain open, e.g. the pairwise comparisons setting. It is well documented that the FDR
is less than 0.05, but by how much? On establishing theoretical results, a better procedure can
be designed.

The other way to address dependence is by bootstrapping and rerandomization. See Yekutieli
and Benjamini (1999), Storey and Tibshirani (2003) and van der Laan and Dudoit (2007).

3.3. Bayes and empirical Bayes approaches to false discivery rate
Much research has been devoted to FDR ideas from the Bayes and the empirical Bayes perspec-
tives, and use the insight thus gained to derive new theory and methodologies. The empirical
Bayes approach to the FDR has been reviewed by Efron (2008), in a very nice and accessible
way. The purely Bayesian work merits a separate review.

4. Conceptual developments

4.1. ‘Testimation’
In Abramovich and Benjamini (1996) we first suggested the use of the procedure in Benjamini
and Hochberg (1995) for thresholding wavelets coefficients when denoising signals. Abramo-
vich et al. (2006) (also Johnstone’s Wald Lecture at the meeting of the Institute of Mathematical
Statistics in Baltimore in 1999) showed that sparse signals could be retrieved by this method at
the optimal rate and with the correct constant. Moreover, optimality holds for both signals that
are sparse because most coefficients are 0, and when none is 0 but their ordered size decays fast.
That testing approach deals well and the latter justifies the importance of simple null hypotheses
in testing, even if a null hypothesis is never exactly true in practice: estimation following selection
by testing, or ‘testimation’, is a practice that can be justified by theory.

This work progressed in different directions by different researchers:

(a) increasing its generality (Donoho and Jin, 2006);
(b) showing that the FDR can be an effective model selection criterion, as it can be translated

into a penalty function (Benjamini and Gavrilov, 2009);
(c) investigating the theoretical boundaries of detection of signals in the space that is spanned

by their sparsity and signal-to-noise ratio, using different multiple-testing approaches,
FWER, the FDR and their ‘higher criticism’ that controls the FWER in the weak sense
(Donoho and Jin, 2004).

4.2. False coverage statement rate and selective inference
In Benjamini and Yekutieli (2005) we demonstrated that confidence intervals that are con-
structed for selected parameters only, where selection depends on the observed values, cannot
ensure nominal coverage even on average. The false coverage statement rate FCR was offered as
a criterion that parallels the FDR, except that a discovery is replaced by ‘a confidence statement
on a selected parameter is made’ and a false discovery is replaced by ‘a confidence statement
on a selected parameter fails to cover the parameter’. A general procedure was given, where
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marginal 1−q|S|=m confidence intervals are constructed for the |S| selected parameters, where
S is the (data-dependent) selected set.

Working on FCR revealed to us that simultaneous and selective inference, the traditional
justifications for multiple-comparisons procedures, are two distinct goals. This fact was
masked because all FWER controlling methods offer simultaneous inference, which in turn
implies selective inference. However, selective inference can be a goal by itself. We now view
the FDR and FCR as concepts that address directly the dangers that are caused by selec-
tive inference—the reporting, or highlighting, or attending only to the significant findings,
which may alter the meaning of the reported p-values and confidence intervals—while
giving up simultaneous inference. In most large problems we care only about the effect of
selection.

Efron (2008) has discussed the issue, and the associated difficulties, from the empirical Bayes
approach. Yekutieli (2010) has discussed it from both the Bayesian and the empirical Bayes
approach and addressed formally the effects of selection. Benjamini et al. (2009) have drawn
attention to this problem in replicability studies of genomewise scans for association with a
disease, where detailed inference is made on fewer than a dozen locations among the 400000
scanned in four studies.

4.3. Multiple multiplicity error rates
Once the FDR managed to break the dichotomy of ‘don’t worry be happy’ unadjusted approach,
versus the ‘panic’ FWER approach, many other error rates that try to take some middle way
were offered. A partial list includes the false exceedance rate Pr.V=R>q/, k-FDR and k-FWER,
and the local FDR. See Benjamini (2010) for references and discussion.

This multiplicity of multiplicity error rates should be welcomed. Each of them might be
appropriate and useful for some inferential situation: personal decision making, policy decision
making, monitoring, scientific communication or licensing. Alas, so far practitioners have been
offered little advice about which error rate each situation requires, which is a condition that we
should change. Otherwise, users will again avoid using control of error rates in a meaningful
way and rely instead on ad hoc solutions (say the use of 10−5 as a threshold of significance in
some genomewise association scans).

Note that the estimation of error rates is sometimes presented as a very different approach
to controlling error rates. I view this as a nuance rather than distinction, as one should care
about the properties of a procedure that selects a set of discoveries according to the value of the
estimator.

5. Conclusion

It was no surprise to me that practitioners have embraced the FDR approach. I also expected
the theoretical developments that would be needed to expand the set of relevant tools (address-
ing dependence, other estimation methods for m0 and model selection). I am surprised (and
delighted) that the FDR idea generated such diverse interest from the theoretical point of view,
extending and expanding our knowledge in so many directions. A remaining puzzle for me is
whether FDR control is a manifestation of another principle, be it empirical Bayes, decision
theoretic, minimum description length and such, or whether it is a principle of its own, which
in some setting coincides with another principle.

Ending with a personal note: I am extremely sad that Yosi Hochberg could not join me in
writing this review, nor travel to Edinburgh to enjoy the ‘retrospectively read paper’ event,
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because of his health problems in recent years. I am sure that the readers will join me in wishing
him good health.
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Comments on the presentation

Ernst Wit (University of Groningen)
When I was Secretary of the Society’s Research Section, it was proposed in the Section to extend the
existing concept of ‘read’ papers, in which important novel research is presented, to ‘retrospectively read’
papers, older papers that have been published in the Society’s journals, which subsequently have become
very influential. From the very start the Research Section Committee faced several problems: would the
original paper be read or would the authors be asked for an ‘update’? Would it become a Festschrift? The
Committee wisely decided to require the paper to be in an area that was still actively under development,
allowing the authors to provide a background to the original paper and guaranteeing that the discussion
would involve recent research contributions.

The only problematic aspect of this whole meeting, perhaps, is the role of the proposer of the vote of
thanks: in fact, Benjamini’s contribution above is a clear analysis and celebration of the original paper
and so what is left for me to do? Benjamini has identified many of the strengths of the original paper and
the way that they have been developed in the years thereafter; he has shown several open problems, both
theoretic ones and related to particular applications. And the fact that this paper has been chosen as a
re-read paper is in itself the largest vote of thanks, as we have the advantage of hindsight this time around.
Nevertheless, I would like to add some words to Benjamini’s account.

Multiple testing
Hypothesis testing is a difficult idea. We all know it when we try to explain the concept in a statistics ser-
vice course. Students see it as formulaic. In fact, it is formulaic. Suddenly they are asked to care about the
probability that such a kind of data could occur if a particular statement about the parameters was in fact
the case. Multiple testing does not make it any easier. p-value corrections—correcting what?—make them
lose sight of what it is that they are actually calculating. According to me, its most important contribution
was the way that Benjamini and Hochberg (1995) opened up the field of hypothesis testing in general,
and multiple testing in particular. The title of the paper testifies to clear foresight: it is exactly a practical
approach, suited to practitioners dealing with multiple questions.

However, it is still early days and not infrequently papers citing Benjamini and Hochberg (1995) are
stuck in their old ways. For example, Patti et al. (2003) (which is the ninth most highly cited paper that
cites Benjamini and Hochberg (1995)) when testing 7129 gene sequences wrote

‘No single gene remained differentially expressed after Benjamini-Hochberg multiple comparison
testing’.

Other papers talk about Benjamini–Hochberg ‘corrections’ or about ‘significance’ (Weisberg et al. (2003),
which is the third most highly cited paper that cites Benjamini and Hochberg (1995)). However, there are
no corrections and there is no significance. Benjamini and Hochberg (1995) introduced two things: a new
error rate and an algorithm that under certain conditions controls that error rate. Old ways may die slowly,
but Benjamini and Hochberg (1995) gave us an intuitive way to understand multiple testing.

Interpretation
Despite its apparent simplicity, the interpretation is more complicated than we might expect at first sight.
If we control the false discovery rate FDR at level α and reject r hypotheses, it does not mean that αr are
wrongly rejected, nor even that on average αr are wrongly rejected. It means that this procedure when
applied many times to this problem on average rejects a fraction α (or less) incorrectly. If we know that
the number of rejections is r, we could potentially calculate E.V=r/, a conditional FDR, which might be
different from α.

There is also the confusion about estimation and control. The Benjamini–Hochberg method does not
estimate FDR. In fact, it does things the other way around. It selects the level α and adopts a rejection
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procedure such that FDR �α. However, later work has blurred this distinction: there are methods that
given a rejection procedure R estimate the unknown quantity ERV=R.

Impact
In many ways, Benjamini and Hochberg (1995) is a very successful paper. Its influence is clear from its 4967
citations (according to the Web of Science at the time of this session), which are still on the rise each year as
can be seen in Fig. 1. Although 607 of these are in the area of statistics and probability, the majority of these
publications are in the life sciences, from genetics to biochemistry, from oncology to plant sciences, reflect-
ing in large part the use of FDR in microarray-related research. Importantly, citations in other high dimen-
sional application areas, such as neural imaging, are on the rise also, showing its ability to be applied in many
diverse types of application. The list of the 10 highest cited papers that cite Benjamini and Hochberg (1995),
which is shown in Table 1, is particularly interesting, because it includes six statistical papers, suggesting
that further theoretical and methodological developments of the method have had significant influence.
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Fig. 1. Rapidly increasing number of citations of Benjamini and Hochberg (1995), suggesting that its influ-
ence has not yet reached its peak (note that the figure for 2009 is only partially shown)

Table 1. 10 most cited papers that cite Benjamini and
Hochberg (1995)

Rank Article citing Benjamini Number of
and Hochberg (1995) citations

1 Tusher et al. (2001) 3723
2 Storey and Tibshirani (2003) 1412
3 Weisberg et al. (2003) 1187
4 Genovese et al. (2002) 1020
5 Storey (2002) 726
6 Wilkinson (1999) 652
7 Benjamini and Yekutieli (2001) 584
8 Wacholder et al. (2004) 486
9 Patti et al. (2003) 479

10 Dudoit et al. (2002) 459
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Summing up, Benjamini and Hochberg (1995) introduced an important new concept, the false discov-
ery rate, and presented a practical approach to implement this concept. Both had enormous practical
impact and at the same time the methodology stood at the beginning of a line of active statistical research,
something that we would normally require from a read paper. It is therefore extremely appropriate that
the Society’s Research Section Committee has selected Benjamini and Hochberg (1995) as the first retro-
spectively read paper and I am happy to propose the vote of thanks.

V. T. Farewell (Medical Research Council Biostatistics Unit, Cambridge)
Accepting the 1932 Democratic nomination for President, Franklin D. Roosevelt said: ‘I pledge you, I
pledge myself, to a new deal for the American people’. His new deal was the real deal for economic recov-
ery. We are reflecting on the false discovery rate (FDR) and, 14 years after Benjamini and Hochberg’s
(1995) paper on this topic, the ‘new deal’ offered by this ‘FDR’ has also proved to be a ‘real deal’.

So, first, let me thank Professor Benjamini, both for his 1995 paper and for his interesting retrospective
look at the paper, its genesis and its impact.

In his presentation, Professor Benjamini indicated that publication delays mentioned arose because
reviews of the initial, and subsequent, FDR papers were split. For one particular paper of my own which
received similar split reviews, the editor reported this divergence of views and indicated that, for this rea-
son, the journal would publish the paper. In my editorial experience, split reviews may arise because of
genuine scientific disagreements, which I assume was the editor’s assessment in this particular case. In
another scenario, one reviewer may be better equipped to evaluate the paper. And, finally, divergence may
arise when the paper is, explicitly or implicitly, challenging an established viewpoint and therefore may
elicit a defensive reaction from those with an investment in the established viewpoint, but not necessarily
from others.

What would have been my reaction if asked to review the submitted FDR paper?
Multiple-comparison procedures can be discussed in terms of questions of interest. Cox (1965) reflected

this and pointed out that probabilities regarding the simultaneous correctness of many statements may
not always be of direct relevance, particularly when there is interest in a specific statement. In the context
of clinical trials, Richard Cook and I elaborated this viewpoint, expressed by Cox in one and a half pages,
in our paper of 18 pages (Cook and Farewell, 1996), under consideration around the same time as the
Benjamini and Hochberg submission.

For illustration, consider a current study of cognitive function in various diseased populations. With a
subset of the study data, the results from a battery of seven neuropsychological tests can be compared in
multiple sclerosis and systemic lupus erythematosus patients. With adjustment for age and education, the
levels of significance associated with the seven tests are 0.036, 0.039, 0.075, 0.284, 0.510 and 0.813. With
a 5% FDR, no comparison would be deemed significant. However, primary interest is in overall perfor-
mance for the battery of tests and, for example, O’Brien’s generalized least squares rank-based procedure
(O’Brien, 1984) generates a global level of significance of 0.013. Here, an FDR procedure may not be
answering the most useful question.

I would also have commented on the example that was used by Benjamini and Hochberg (1995). The
original clinical paper examined data on 15 cardiac and other events, one of which was mortality. A
Bonferroni approach with a 5% familywise error rate FWER would therefore not have rejected the null
hypothesis of no mortality difference, which had a nominal level of significance of 0.0095. In contrast, a
5% FDR procedure would have rejected this hypothesis, and three other hypotheses also rejected by the
Bonferroni procedure. But, surely, mortality is a clinical outcome of very specific importance, perhaps the
archetypal ‘primary outcome’. Should our inference concerning this depend on conclusions about other
aspects of the treatment comparison? I would have disagreed with the authors that only with an FDR
procedure is there ‘appropriate confidence’ to support a difference in mortality.

Nevertheless, when compared with procedures which control FWER, the probability of one or more
false positive tests, the FDR addresses a very different type of question. The focus is on an ‘error rate’ that
is defined in terms of the ‘rejected’ hypotheses, functioning in some respect like a positive predictive value.
In a situation when probability statements concerning simultaneous correctness of multiple statements
may be useful, the FDR approach should surely have been seen as at least equally worthy of consideration
as the FWER-approach, potentially having advantages in some circumstances. Thus, I should like to think
that I would have supported publication of the paper, if certain caveats had been made and the example
was seen as illustrative and not definitive. I wonder therefore whether there was, in fact, either a respectable
difference of scientific opinion or an aspect of defensiveness to those early negative reviews. If so, it might
serve as a useful caution when writing reviews.
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Subsequently, as Professor Benjamini has indicated, the FDR procedure came into its own with the new
challenges of genetic and genomic research when a very large number of simultaneous significance tests
were being performed. Other areas of application have also emerged, the comparison of many healthcare
providers (Jones et al., 2009) being a notable illustration. Questions for which the FDR was suited have
arrived! Although there may still be some concerns about procedures based solely on levels of significance
and about the exact nature of the probabilities behind the procedures, in these applications, the FDR has,
minimally, practical usefulness. This was characterized by Cox (1965) as ‘giving a conservative bound for
the effect of selection, rather than in giving an “exact” solution’.

It gives me great pleasure, therefore, to second the vote of thanks to Professor Benjamini for his impor-
tant 1995 paper and for his retrospective look at it.

The vote of thanks was passed by acclamation.

José A. Ferreira (National Institute for Public Health and the Environment, Bilthoven)
I have found it very interesting to read Benjamini’s views on his method and to learn about the early
adventures and tribulations of the false discovery rate (FDR). I shall discuss two aspects of the FDR
which Benjamini did not emphasize in his presentation and which are relevant when m is large:

(a) the Benjamini–Hochberg (BH) method works more generally and often in a stronger sense than
originally thought, and in a sense it is optimal;

(b) however, the few assumptions that are required by the method should be checked as much as
possible, and they call for the development of ‘diagnostic’ procedures.

Regarding (a), suppose that of the m statistics T1, . . . , Tm the first m0 are computed ‘under the null
hypothesis’ and have the same distribution function (DF) F whereas the other m−m0 tend to take smaller
values; for example, the statistics could be p-values and F the uniform DF. By rejecting all hypotheses
whose statistics fall strictly below the ‘threshold’ t we incur a false discovery proportion FDP of

FDPm.t/ :=

m0∑

i=1
1{Ti<t}

m∑

i=1
1{Ti<t}

≡ m0

m

Fm0 .t−/

Hm.t−/
≡πm

Fm0 .t−/

Hm.t−/
,

where Hm is the empirical DF of the Tis, Fm0 that of T1, . . . , Tm0 and πm =m0=m. This provided Hm.t−/>0,
for otherwise no hypotheses are rejected and FDPm.t/=0. Consequently, by rejecting all hypotheses with
statistics strictly below the threshold

tm = sup{t :πm Fm0.t/=Hm.t/�q}
we can keep FDP�q. Moreover, since we cannot increase tm without risking an increase in FDP beyond q,
and since the bigger the threshold the bigger the number of true discoveries, tm is optimal. Unfortunately,
Fm0 being unobservable and πm unknown, this ideal threshold cannot be determined. But if Fm0 is close
to F and πm is not much smaller than a given πÅ

m then

tÅm = sup{t :πÅ
mF.t/=Hm.t/�q}

is close to the ideal threshold tm and hence controls FDP approximately at q and is close to being optimal.
As theorem 2 of Benjamini and Hochberg (1995) shows, the procedure based on the approximate thresh-

old tÅm is the BH method, and what the above formulation makes apparent is that, except in ‘pathological
situations’, the method controls FDP in the various senses of convergence (as m→∞) and under a very
wide range of probability models (essentially under any model for which Fm0→F uniformly). Of course,
just as with most limit theorems in statistics, the extent to which the ‘BH limit theorem’ applies to a given
data set is unascertainable, but that does not make it less useful.

Regarding (b), if the Tis are rank statistics (say) the method may work accurately even if the F that is
used to define tÅm is the asymptotic DF of the Tis. More generally, Fm0 is often closer to some F̃ than to F
but the resulting ‘disturbance’ on the FDR is small because F̃ is itself close to F. However, sometimes the
postulated F deviates grossly from the correct DF in the tail(s), leading to a serious underestimation
or overestimation of the FDR; I suspect that this is often so when the Tis are p-values computed from
t-statistics, and perhaps even more so when they are based on regression models. This calls for the devel-
opment of methods (mainly graphical and necessarily informal, I think) for checking the ‘approximate
validity’ of the BH theorem.
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G. Green and P. J. Diggle (Lancaster University)
The original paper by Benjamini and Hochberg (1995) has achieved well-deserved fame through its devel-
opment of the false discovery rate (FDR) as an alternative to classical methods of adjustment for multiple
significance testing, which fail to provide reasonable procedures when the number of tests is large. The
concept of FDR control has been embraced by the genomics community, where a typical objective of
statistical analysis is to identify differentially expressed genes. Nevertheless, we still see papers in non-
statistical journals that use the naive procedure of testing at extreme levels of significance, say p=10−5 or
p= 10−6. The Society’s decision to highlight the importance of the 1995 paper, and subsequent work by
its authors, is therefore very welcome.

The problem of detecting differentially expressed genes can be cast, apparently quite naturally, in a
classical hypothesis testing framework, formulating the null hypothesis as H0,g: gene g is not differentially
expressed, against the two-sided alternative for g = 1, . . . , G. Typically G is of the order of thousands
and the procedure of Benjamini and Hochberg (1995) provides a pragmatic response to the attendant
multiple-testing problem.

The detection of differential expression can be considered as a special case of gene profiling where,
more generally, the aim is to identify genes which show compelling evidence in favour of satisfying some
predefined criterion or profile. In our opinion, although classical testing addresses the common aim of
detecting differential expression, it fails to extend adequately to many less standard questions of gene
profiling. For example, in the context of a microarray time course experiment, Tuke et al. (2008) sought
to identify genes that show, simultaneously, evidence in favour of differential expression across one pair
of time points and equal (i.e. non-differential) expression across another pair of time points. Using the
equivalence testing paradigm (see Wellek (2002)), Tuke et al. (2008) developed an approach based on the
intersection–union test principle (Berger, 1982), resulting in a conservative test. We are unaware of an
exact test which responds to such a question.

We would argue that questions of this kind are better addressed as prediction problems, rather than
through any form of hypothesis testing. Green (2008) has developed the following model-based approach
for identifying genes that satisfy some predefined profile. Let Ygtr be a suitably preprocessed, log-scale-
measured gene expression for gene g, treatment t and replicate r, g=1, . . . , G, t =1, . . . , T , r =1, . . . , R. We
suppose that Ygtr =μg + Wgt + Zgtr, specifying a random gene–treatment interaction effect; typically, the
main effect parameters μg may be corrupted by the preprocessing and, in any event, are of limited scientific
interest. Fitting the model by using either restricted maximum likelihood or Bayesian inference enables
evaluation of the joint predictive distribution [Wg|Y] for all g = 1, . . . , G and, more interestingly, of pre-
dictive probabilities which reflect the degree to which a gene satisfies some predefined profile. For example,
the probability P.|Wgt −Wgt′ |>d|Y/ reflects the evidence in favour of gene g being differentially expressed
across treatments t and t′. Similarly, the probability P.{|Wgt −Wgt′ |> d}∩{|Wgt′′ −Wgt′′′ |< d}|Y/ reflects
the evidence in favour of gene g being, simultaneously, differentially expressed across t and t′, but equally
expressed across t′′ and t′′′. In its simplest form, the model assumes normally distributed random effects,
but we have also developed a hierarchical extension in which the variances of the Wgt are themselves given
scaled inverse χ2-distributions, to capture non-Gaussian behaviour that, in our experience, is typical of
differences in measured log-expression levels.

Author’s response
I thank the discussants for their votes of thanks and compliments, and their heartwarming words during
their oral presentation, as well as for their illuminating remarks.

Professor Ferreira commented on the need to verify the assumptions underlying the use of the false dis-
covery rate controlling procedure in Benjamini and Hochberg (1995). Interestingly, the method works even
when the asymptotic assumptions are clearly violated, as in many-to-one comparisons. Still, the appro-
priateness relies on valid (conservative) p-values. It is therefore valid for the rank statistics mentioned, but
their discrete nature offers potential for improvement.

Professor Farewell gave an example comparing two groups via seven neuropsychological tests, demon-
strating that a combination test is more powerful than the procedure in Benjamini and Hochberg (1995).
I argued that an important and often neglected issue in practice is a judicious choice of the error rate, and
this example is a case in point. If researchers indeed treat the seven tests as a single battery—their implied
concern is about a weak familywise error rate (under the global null hypothesis), and the most powerful
method assuring it is appropriate. Only if they would further wish to conclude that the difference hinges
on some specific tests should they care about the false discovery rate, familywise error rate or their likes,
and act accordingly.
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Dr Green prefers predictive probabilities that reflect the degree to which a gene satisfies some predefined
profile to p-values based on testing. I wonder how much worse did screening over the conjunction hypoth-
esis for each gene perform? More importantly, I would argue that screening across all genes, and selecting
the few with ‘high predictive probabilities’ (low prediction error probabilities) should be accompanied by
a procedure addressing the dangers of selective inference.

Professor Wit expresses subtly and politely his dismay with tests and significance statements. I am very
much in favour of significance testing in the Fisherian sense, as a formal means to weed out results due
to chance variation. I think that the ‘testimation’ that is discussed in the main paper sheds light from a
current point of view on the importance of statistical significance testing.

Both Professor Farewell and Professor Wit emphasized the practical aspect of the false discovery rate
approach. I agree, and I further believe that the practical needs will continue to motivate much of the
future development. In brain imaging research, for example, involving of the order of 50000 voxels per
analysis, the goals of the inference are still debated: should researchers care about the proportion of false
discoveries among voxels found active, or the proportion of errors among active regions (contiguous sets
of voxels)? Maybe neither is of interest, but rather are topological features such as peaks and cusps? Mon-
itoring healthcare, mentioned by Professor Farewell, is another area where the choices of units of interest
need not be the obvious ones. Research areas that require conceptual, theoretical and methodological
developments are bound to appear.

The increasing size of the problems attended in practice, contrasted with the few potential discoveries,
will continue to challenge researchers. I see three promising directions. Pooling hypotheses to clusters is
often a way to gain power. In the testing for active voxels in brain imaging experiments, clusters can be
based on a moving window (Pacificoa et al., 2007), or a pilot study (Benjamini and Heller, 2007). The
clusters need not be of the same size and shape, are of neurological relevance and are tested by using a
combining statistic for each cluster. We gain power both from combining the evidence over clusters, and
from the smaller number of tests.

Testing for active voxels within the clusters that are found active is a natural way to continue (Benjamini
and Heller, 2007). This is an example of hierarchical testing of a tree of hypotheses, where a subfamily of
a branch is tested only after the node from which it branches has been tested and rejected. The general
tree structure can be of varying depth and size, and opportunities for power gain arise when hypotheses
in a branch tend to be true or false together. Reiner-Benaim et al. (2007) have presented a framework,
and Yekutieli (2008) has provided theoretical analysis for simple but important cases. Zehetmayer et al.
(2005) used a hierarchical approach for screening experiments, and Meinshausen (2008) for testing the
importance of variables in a regression model (from the familywise error rate perspective). The general
hierarchical approach is extremely flexible and promising, yet it awaits future developments.

Employing weights to differentiate between the hypotheses tested is another direction. The weights
may incorporate differing importance of the hypotheses (Benjamini and Hochberg, 1997), or different
prospects for showing effects (Genovese et al., 2006). The weights can be based on outside information,
or on information from initial testing or on the size of the set (Benjamini and Heller, 2007). There are
many conceivable variations of combination of all three directions, as Hu et al. (2009) have demon-
strated.

Of course directions that we are currently unaware of may end up being most fruitful.
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