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EM Algorithm (High-Level Idea): Dream World

Consider an imaginary dream world
perhaps without a replicability
crisis.

One may posit that we would have
access to the following two
settings where for any population
of interest we have access to:

1. Large sample of data
2. Underlying parametric model

(i.e., that it has a Normal
distribution with mean 10 and
standard deviation 5)
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EM Algorithm (High-Level Idea): E-Step

Do we really need both of these?
What if we only had access to the
parametric model?

1. What would be the best
estimate of a missing data
point given our model?
▶ If we knew that our model

∼ Normal(10, 5), what
would be the best guess for
the missing point?

2. Underlying parametric model
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EM Algorithm (High-Level Idea): M-Step

Do we really need both of these?
What if we only had access to a
large sample of the data ?

1. Large sample of data
2. What would be the best

estimate for the model
parametrization given access
to infinite data from our
population of interest?
▶ If our observed data was

{5, 10, 15, . . .} ∼
Normal(x, 5) what would
be the best guess for x?
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EM Algorithm (High-Level Idea): Real World

Of course, we typically don’t have access to either of these settings in the real world.

Figure 1: The Real World

This is why the EM algorithm is such a powerful and essential tool!
By assuming one of the two settings to do inference in the other setting and vice versa,
we can eventually get statistically valid estimates of the model underlying our
population of interest while also filling in missing data.
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EM Algorithm (Math): Missing Data

There are numerous data analysis settings where we have to deal with missing data.
Some examples include:

• A factory sensor that malfunctions for a brief period of time
• Census data that isn’t able to access particularly rural communities
• Genetic studies where have only access to data on a subset of the genes

We can represent this mathematically by defining a many-one mapping X → Y where
X ∈ X is our world of complete data, and Y (X) ∈ Y is the world of data we
observe (so y(x) is the complete data x with some of the points missing).

We assume a family of sampling densities f(x|ϕ), so the distribution corresponding
to the missing data actually observed integrates over every possible dataset x ∈ X that
would lead to the observation y:

g(y|ϕ) :=
∫
X (y)

f(x|ϕ)dx

6 “Maximum Likelihood From Incomplete Data via the EM Algorithm" (AP Dempster, NM Laird & DB Rubin)March 17, 2024



EM Algorithm (Math): Algorithm

Q(ϕ′|ϕ) := E[log f(x|ϕ′)|y, ϕ] =
∫
X (y)

log f(x|ϕ′)f(x|ϕ)dx

We can think of Q as weighting the possible points that the "complete data" can be
based on how likely they are under our current guess of ϕ.

At each step p = 1, 2, . . . until we converge, the EM algorithm iterates between the
following two steps:

1. E-Step: Compute Q(ϕ|ϕ(p))

2. M-Step: Choose ϕ(p+1) to be the value of ϕ ∈ Ω that maximizes Q(ϕ|ϕ(p))

Note that the EM algorithm has simple extensions to the Bayesian setting where we
replace the MLE with the posterior mode in the M-Step.
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Why Does it Work? (Theory)

Idea: Every step of EM increases the value of the likelihood.
Denote a step of EM by the function M : ϕ(p+1) = M(ϕ(p))

k(x|y, ϕ) := f(x|ϕ)
g(y|ϕ)

L(ϕ) := log g(y|ϕ)

H(ϕ′|ϕ) := E[log k(x|y, ϕ′)|y, ϕ]

L(ϕ) = log f(x|ϕ)− log k(x|y, ϕ) =⇒ Q(ϕ′|ϕ) = L(ϕ′) +H(ϕ′|ϕ)

L(M(ϕ))− L(ϕ) = {Q(M(ϕ)|ϕ)−Q(ϕ|ϕ)}+ {H(ϕ|ϕ)−H(M(ϕ)|ϕ)} ≥ 0

The inequality follows by the construction in the M-Step (for the first term involving Q)
and Jensen’s inequality (for the second term involving H).
Settings for convergence are discussed in detail in the paper.
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Important Considerations with use of the EM Algorithm

We particularly note the following assumptions required in the derivations and thus
applications of EM:

1. Parametric assumption on the population distribution
2. Missing data comes from population whose distribution is equivalent to that of the

observed data
▶ Typically, there’s a reason why that data is missing that could be a result of that

population’s distribution being different
▶ Among our 3 examples of missing data (Slide 6), the factory sensor one would be a

valid application, but the census data example would not necessarily be appropriate

These are interesting areas for future research perhaps through sensitivity analysis or
extensions of the algorithm.
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Examples of the EM Algorithm: Missing Data

Here we discuss a simple example of using EM algorithm with missing data.
• Consider a five-category multinomial population, where the probability is
(12 ,

1
4π,

1
4(1− π), 14(1− π), 14π), and the complete data is x = (x1, x2, · · · , x5)

• Due to the missing data issue, we only observe y = (y1, y2, · · · , y4), where
y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5, and we hope to estimate π.

• The complete log-likelihood is

f(x|π) ∝ x1 log(
1

2
) + (x2 + x5) log(

1

4
π) + (x3 + x4) log(

1

4
(1− π))

• The EM steps produce an iterative estimate π(p):
▶ Given the current estimate π(p), the estimates of x1, x2 is x

(p)
1 = 1/2

1/2+π(p)/4
y1 and

x
(p)
2 = π(p)/4

1/2+π(p)/4
y1

▶ Given the current estimate x̂
(p)
1 , x̂

(p)
2 , the maximum likelihood estimate is

π(p+1) =
x
(p)
2 +x5

x
(p)
2 +x3+x4+x5

.
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Examples of the EM Algorithm: Missing Data
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Examples of the EM Algorithm: Finite Mixtures

• Suppose we have observations y = (y1, · · · , yn), and there exists a finite set of R
states, such that each yi is associated with a unique state (unobserved), denoted
as z = (z1, · · · , zn). Specifically, zi = k indicates yi belongs to the k-th state.

• zi
iid∼ v(·|ϕ), yi

iid∼ u(·|zi, ϕ)
• The complete data likelihood is

log f(y, z|ϕ) =
n∑

i=1

(log v(zi|ϕ) + log u(yi|zi, ϕ))

The EM steps are:
▶ E step: Estimate the hidden states zi for given the current parameters ϕ(p), i.e.,

compute P(zi = k|y, ϕ(p))
▶ M step: Complete-data maximization with estimated states zi, i.e., solve

ϕ(p+1) = argmaxϕ Ez|y,ϕ(p) log f(y, z|ϕ)
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Examples of the EM Algorithm: Finite Mixtures

A classical example is the Gaussian Mixture Model.

• zi
iid∼ Categorical(π1, · · · , πR), yi|zi = k

iid∼ Normal(µk, σ
2
k)

For E-step, the posterior distribution for states z is

ωk,i = P(zi = k|y, ϕ) = P(zi = k|ϕ)P(yi|zi = k, ϕ)∑R
j=1 P(zi = j|ϕ)P(yi|zi = j, ϕ)

=
πkN (yi|µk, σ

2
k)∑R

j=1 πjN (yi|µj , σ2
j )

For M-step, the expected likelihood is expressed as

Ez|y,ϕ[log f(y, z|ϕ)] =
n∑

i=1

R∑
k=1

P(zi = k|y, ϕ) logP(yi, zi = k|ϕ)

=

n∑
i=1

R∑
k=1

ωk,i

[
log πk −

1

2
log(σ2

k)−
1

2σ2
k

(yi − µk)
2

]
+ C
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Examples of the EM Algorithm: Finite Mixtures

The optimizer of M-step is then given by:

π̂k =
1

n

n∑
i=1

ωk,i, µ̂k =

∑n
i=1 ωk,iyi∑n
i=1 ωk,i

, σ̂2
k =

∑n
i=1 ωk,i(yi − µ̂k)

2∑n
i=1 ωk,i

Intuition:
• the E steps computes responsibilities ωk,i of each point i to each state k.
• the M steps update the state probability, mean, and variance weighted by the

computed responsibilities.
• This is often viewed as the soft assignment version of K-means algorithm, where

we assign each point to the closest state, and update the state mean by the
sample mean in each state.
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Examples of the EM Algorithm: Finite Mixtures

Real-world application: Image Segmentation. The image is represented by a collection
of pixels yi ∈ R3, and in the segmentation problem, we simply use the Gaussian mixture
model to classify them into two clusters.

Figure 2: An example of image segmentation using EM algorithm on Gaussian Mixture Models.
Taken from Scott Linderman’s Stats 305C material.
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Examples of the EM Algorithm: Finite Mixtures

Figure 3: More examples
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Variants of EM Algorithm

EM algorithm produces convenient solutions for many simple problems, but:
[Gupta et al., 2011]

• EM only finds stationary points of the likelihood function
▶ Use EM in conjunction with a global optimizer to explore the space more efficiently.

[Ali et al., 2005]
• the computations required may not be computationally tractable

▶ Generalized EM: Only ensure the likelihood is increasing in M-step, use gradient
ascent or Newton’s method.

▶ MCMC to approximate the E step.
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Variants of EM Algorithm

• the convergence may be too slow
▶ Aitken’s acceleration [Meilijson, 1989]: Write ϕ(p+1) = ϕ(p) + S(ϕ̂− ϕ(p)), use

Taylor expansion to find the optimal S, the analogy of Newton’s method for EM.
• the maximum likelihood estimate may not be the desired output

▶ Stochastic EM [Celeux, 1985]: draw a random sample in E step to produce a
posterior distribution for ϕ.

▶ Data Augmentation [Tanner and Wong, 1987]: also randomize M step, draw
ϕ ∼ P(ϕ|x) ∝ P(x|ϕ)P(ϕ), the original M step corresponds to find the posterior
mode if we assume a non-informative prior.
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Historical Notes

EM was formalized as an approach to solving arbitrary maximum likelihood problems
and named EM in [Dempster et al., 1977], but the idea was used earlier.

• In 1958 Hartley presented the main ideas of EM, rooted in the special case of
counting data. [Hartley, 1958]

• Baum and Welch developed an algorithm for fitting hidden Markov models
(HMMs) that is often called the Baum–Welch algorithm, which is equivalent to
applying the EM algorithm. [Baum et al., 1970, Welch, 2003]

• The earliest reference to literature on an EM-type of algorithm is [Newcomb, 1886],
who considers estimation of parameters of a mixture of two univariate normals

"I felt like the old minstrel who has been singing his song for 18 years and now finds,
with considerable satisfaction, that his folklore is the theme of an overpowering
symphony" —— Hartley
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