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The Problem of Bayesian Inference

Let x denote observed data and θ denote model parameters.

The central problem of Bayesian inference is to compute the
posterior p(θ | x), where (by Bayes rule):

p(θ | x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x | θ)

prior︷︸︸︷
p(θ)

p(x)︸︷︷︸
evidence

For many models, computing the evidence p(x) =
∫
p(x,θ)dθ is

intractable.

How can we approximate the posterior distribution p(θ | x)?
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Example: Hierarchical Gaussian Model

Suppose we would like to model differences in test scores from S
schools.

Let xs,n ∈ R be the score of the n-th student from the s-th school,
for n = 1, . . . Ns, s = 1, . . . S.

We could use the following hierarchical model:

xs,n ∼ N (θs, σ
2
s) for n = 1, . . . , Ns and s = 1, . . . , S

θs ∼ N (µ, τ2) for s = 1, . . . , S

σ2
s ∼ IG(a1, b1) for s = 1, . . . , S

µ ∼ N (µ0, σ
2
0)

τ2 ∼ IG(a2, b2)

The model parameters are θ = {{θs, σ2
s}Ss=1, µ, τ

2}. Assume all
other hyperparameters are known.
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MCMC Methods

Instead of needing to characterize the full posterior p(θ | x), we
almost always care about expectations with respect to this
distrbution. For example:

Ep(θ|x)[θ] (posterior mean)
Ep(θ|x)[1(θ ∈ S)] (posterior probability of θ being in a set S)
Ep(θ|x)[p(x

′ | θ)] (posterior predictive density of new data x′)

In general, we care about

Ep(θ|x)[f(θ)] =

∫
f(θ)p(θ | x)dθ

MCMC methods allow us to draw approximate samples
θn ∼ p(θ | x). Then, we use the estimate

Ep(θ|x)[f(θ)] ≈
1

N

N∑
n=1

f(θn)
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Prior Work

Quadrature methods (Reilly (1976), Naylor and Smith (1982))

Roughly, these methods approximate the integral numerically via∫
f(θ)p(θ | x)dθ ≈

M∑
m=1

f(θm)p(θm | x)∆m

where θm ∈ Θ form a grid of points and ∆m is the partition size.
Becomes computationally intensive in high parameter dimensions
because we require more points to approximate the integral.

Metropolis-Hastings algorithm (Metropolis et al. (1953), Hastings
(1970))

MCMC method which allows us to sample from a distribution

p(z) = p̃(z)
Zp

, where p̃(z) can be evaluated at any z and Zp may be

unknown.
Involves drawing samples from a proposal distribution and
accepting it with some probability.
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Overview of Gelfand and Smith (1990)

“I would like to turn the Bayes thing from being some kind of
quasi-religious view of how to do it [Bayesian inference]... to just
do it, practically” - Adrian Smith, 2024(?)

Main contributions of this paper:

Argued for using substitution sampling (Tanner and Wong, 1987)
and Gibbs sampling (Geman and Geman, 1984) as simple and
accessible computational methods for estimating marginal densities
Demonstrated a close relationship between the two methods, and
showed how substitution sampling can be used to accelerate Gibbs
sampling
Popularized the usage of MCMC methods in the broader statistics
community
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Overview of Gelfand and Smith (1990)

The goal is to estimate marginal densities from available
conditional densities.

E.g., if our model has additional parameters or latent variables z,
we may want to estimate p(θ | x) from p(θ | z,x).
An “available” density means that we can efficiently sample from it.

For simplicity, let’s ignore the Bayesian framework of conditioning
on data x for now. We’ll come back to it later.
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Substitution Sampling

We would like to estimate marginals p(x) and p(y), given that
p(x | y) and p(y | x) are available.
We can write

p(x) =

∫
p(x | y)p(y)dy, p(y) =

∫
p(y | x)p(x)dx

Substituting p(y) into the expression for p(x) yields

p(x) =

∫
p(x | y)

[∫
p(y | x′)p(x′)dx′

]
dy

=

∫ [∫
p(x | y)p(y | x′)dy

]
︸ ︷︷ ︸

:=h(x,x′)

p(x′)dx′

This suggests an iterative process to get to p(x), through a series
of distributions pi(x) ≈ p(x), such that

pi+1(x) =

∫
h(x, x′)pi(x

′)dx′
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Substitution Sampling

Marginal distributions

p(x) =
∫
p(x | y)p(y)dy, p(y) =

∫
p(y | x)p(x)dx

Algorithm:

Initialize a distribution p0(x).

Sample x(0) ∼ p0(x).

For k = 1, . . . , i iterations:

Sample y(k) ∼ p(y | x = x(k−1)).
Sample x(k) ∼ p(x | y = y(k)).

At the end of i iterations, collect samples (x(i), y(i)).

Repeat the algorithm m times to generate iid pairs (x
(i)
j , y

(i)
j ) for

j = 1, . . . ,m.
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Substitution Sampling

Why does this algorithm work?

Tanner and Wong (1987) showed that x(i)
d→ p(x) and y(i)

d→ p(y).

So for i large enough, we can take {x(i)j , y
(i)
j }mj=1 as approximate

samples from the marginal distributions.

We can also obtain an estimate of p(x) via Monte Carlo:

p(x) ≈ p̂i(x) =
1

m

m∑
j=1

p(x | y = y
(i)
j )

Can easily extend to 3 or more variables by writing, e.g.,

p(x) =

∫
p(x, z | y)p(y)dydz

p(y) =

∫
p(x, y | z)p(z)dxdz

p(z) =

∫
p(y, z | x)p(x)dxdy
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Gibbs Sampling

Suppose we instead write the factorization of 3 variables as:

p(x) =

∫
p(x | z, y)p(z | y)p(y)dydz

p(y) =

∫
p(y | x, z)p(x | z)p(z)dxdz

p(z) =

∫
p(z | y, x)p(y | x)p(x)dxdy

and we only know the full conditionals.

We can no longer use substitution sampling as is, since it requires
knowledge of both full conditionals and reduced conditionals (e.g.
p(z | y)).
Gibbs sampling is an MCMC method which relies only on
sampling from the full conditionals.
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Gibbs Sampling

Suppose we would like to sample from K marginal distributions,
p(u1), . . . , p(uK). Assume that the full conditionals p(uk | u¬k) for
k = 1, . . . ,K are available.

Initialize u
(0)
1 , . . . , u

(0)
K .

Sample u
(1)
1 ∼ p(u1 | u(0)2 , . . . u

(0)
K ).

Sample u
(1)
2 ∼ p(u2 | u(1)1 , u

(0)
3 , . . . u

(0)
K ).

... And so on.

After i iterations, collect samples (u
(i)
1 , . . . , u

(i)
K ). To obtain multiple iid

samples, one could repeat the algorithm m times, or subsample a single
sequence of samples (since successive samples will be correlated).
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Gibbs Sampling

Why does this algorithm work?

Geman and Geman (1984) showed that

(u
(i)
1 , . . . , u

(i)
K )

d→ p(u1, . . . , uK)

In fact, this holds under any visiting order, as long as each
variable is visited infinitely often.

They also showed the ergodic theorem for Gibbs sampling. For
any measurable f whose expectation exists,

lim
i→∞

1

i

i∑
ℓ=1

f(u
(ℓ)
1 , . . . , u

(ℓ)
K )

a.s.→ E(f(u1, . . . , uK))

We can obtain an estimate of the density of uk for k = 1, . . . ,K by
Monte Carlo:

p̂i(uk) =
1

m

m∑
j=1

p(uk | ¬uk = ¬u(i)kj )
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Relationship Between Substitution and Gibbs Sampling

In the case of two random variables, Gibbs sampling and substitution
sampling are identical.

For K > 2 variables,

Gibbs sampling requires K full conditional distributions.

Substitution sampling requires K(K − 1) conditional distributions
(including all K full conditional distributions.
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Relationship Between Substitution and Gibbs Sampling

Substitution-sampling algorithm may be carried out under availability
of just the set of full conditional distributions:

If p(y|x) is unavailable, we can create a sub-substitution loop to
obtain it via

p(y|x) =
∫

p(y|x, z)p(z|x)dz

p(z|x) =
∫

p(z|x, y)p(y|x)dy

. . .

For K variables, this idea can be extended to estimate an arbitrary
reduced conditional distribution, given the full conditionals.

When the set of K full conditionals are available,
substitution-sampling algorithm and Gibbs sampler are equivalent.
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Relationship Between Substitution and Gibbs Sampling

Accelerated convergence from the substitution-sampling algorithm
when some reduced distributions (distinct from the full conditional
distributions) are available:

Write the substitution algorithm with appropriate conditioning to
capture these reduced conditionals.

As we traverse a cycle, we would sample from these distributions
as we come to them (otherwise sampling from the full conditional
distributions).
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Importance Sampling

Rubin (1987) suggested a nontierative Monte Carlo method for
generating marginal distributions using importance-sampling.

Suppose we want to compute p(x), given ∝ p(x, y) and p(x|y), and
p(y) is unknown.
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Importance Sampling

Choose an importance-sampling distribution denoted ps(y) for Y
that has positive support wherever Y does, i.e.
supp(ps(y)) ⊇ supp(p(y)).

Draw iid pairs (Xl, Yl) for l = 1, . . . , N from joint distribution; for
example, draw Yl from ps(y) and Xl from p(x|Yl).
Compute importance weights wl := p(Xl, Yl)/ (p(Xl, Yl)ps(Yl)).

Estimate marginal density p(x) by

p̂(x) =
N∑
l=1

(
p(x|Yl)wl

)
/

N∑
j=1

wj .

p̂(x)
a.s.→ p(x) as N → ∞ for a.s. x.
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Revisiting the Hierarchical Gaussian Model

Recall the hierarchical Gaussian model:

xs,n ∼ N (θs, σ
2
s) for n = 1, . . . , Ns and s = 1, . . . , S

θs ∼ N (µ, τ2) for s = 1, . . . , S

σ2
s ∼ IG(a1, b1) for s = 1, . . . , S

µ ∼ N (µ0, σ
2
0)

τ2 ∼ IG(a2, b2)

The full conditional distributions can be found in closed form:

p(θs | µ, τ2, σ2
s , {xs,n}) and p(µ | τ2, {θs, σ2

s}, {xs,n}) are Gaussian
distributions

p(σ2
s | µ, τ2, θs, {xs,n}) and p(τ2 | µ, {θs, σ2

s}, {xs,n}) are inverse
gamma distributions.
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Revisiting the Hierarchical Gaussian Model

Figure 1: Inverse gamma prior for σ2
s and τ2
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Revisiting the Hierarchical Gaussian Model

Figure 2: Normal prior for µ
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Revisiting the Hierarchical Gaussian Model

(a) Trace plots for model parameters.
(b) Estimated posteriors for model
parameters.
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Notable developments since then

Hamiltonian Monte Carlo (HMC) (Neal, 1996):

HMC is an instance of the MH algorithm. Proposals are generated
via Hamiltonian dynamics evolution simulated through a
time-reversible and volume-conserving numerical integrator.

Stan: A probabilistic programming language for statistical
inference written in C++.

Allows for easy specification of Bayesian hierarchical model and fast
inference based on a variant of the No-U-Turn sampler (NUTS,
Hoffman and Gelman, 2014).

Incorporation of deep neural networks in computing posteriors:

A Deep Generative Approach to Conditional Sampling, (Zhou et
al., 2023 JASA)
Metropolis-Hastings via Classification, (Wang et al., 2022 JMLR)
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