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The Problem of Bayesian Inference

@ Let x denote observed data and 6 denote model parameters.

@ The central problem of Bayesian inference is to compute the
posterior p(0 | x), where (by Bayes rule):
likelihood prior

—— N
p(x | 6)p(0)

p(0 | x) =

N—— p (X)

posterior N~~~
evidence

o For many models, computing the evidence p(x) = [ p(x,80)d0 is
intractable.

e How can we approximate the posterior distribution p(@ | x)?

Amber Hu and Sophia Lu (STATS 31 February 13, 2024 2 /23



Example: Hierarchical Gaussian Model

e Suppose we would like to model differences in test scores from S
schools.

@ Let x5, € R be the score of the n-th student from the s-th school,
forn=1,...Ng,s=1,...5.

@ We could use the following hierarchical model:

Tspn~N(s,02) forn=1,...,Nyands=1,...,8
O ~ N(pu,7%) fors=1,...,8

02 ~IG(ay,by) fors=1,...,8

p~ N (o, 03)

7% ~ IG(as, b)

o The model parameters are 8 = {{0,,02}5_,, u, 72}. Assume all
other hyperparameters are known.
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MCMC Methods

e Instead of needing to characterize the full posterior p(0 | x), we
almost always care about expectations with respect to this
distrbution. For example:

o E,g)x)[0] (posterior mean)
o E,gx)[1(0 € S)] (posterior probability of 8 being in a set S)
o E,g)x)[p(x' | )] (posterior predictive density of new data x’)

e In general, we care about

E, o0 f / £(0)p(6 | x)d

o MCMC methods allow us to draw approximate samples
0, ~ p(@ | x). Then, we use the estimate

B0 [F(0)] ~ 1 > F(61)
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e Quadrature methods (Reilly (1976), Naylor and Smith (1982))

e Roughly, these methods approximate the integral numerically via

/f 9|xd0~2f (0, | X) Ay,

where 0,,, € © form a grid of points and A,, is the partition size.
e Becomes computationally intensive in high parameter dimensions
because we require more points to approximate the integral.

e Metropolis-Hastings algorithm (Metropolis et al. (1953), Hastings

(1970))
o MCMC method which allows us to sample from a distribution
p(z) = p( ) where p(z) can be evaluated at any z and Z, may be
unknown

e Involves drawing samples from a proposal distribution and
accepting it with some probability.
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Overview of Gelfand and Smith (1990)

e “I would like to turn the Bayes thing from being some kind of
quasi-religious view of how to do it [Bayesian inference]... to just
do it, practically” - Adrian Smith, 2024(?)

@ Main contributions of this paper:

o Argued for using substitution sampling (Tanner and Wong, 1987)
and Gibbs sampling (Geman and Geman, 1984) as simple and
accessible computational methods for estimating marginal densities

e Demonstrated a close relationship between the two methods, and
showed how substitution sampling can be used to accelerate Gibbs
sampling

e Popularized the usage of MCMC methods in the broader statistics
community

Amber Hu and Sophia Lu (STATS 31 February 13, 2024 6 /23



Overview of Gelfand and Smith (1990)

@ The goal is to estimate marginal densities from available
conditional densities.

o E.g., if our model has additional parameters or latent variables z,
we may want to estimate p(0 | x) from p(0 | z,x).
e An “available” density means that we can efficiently sample from it.
e For simplicity, let’s ignore the Bayesian framework of conditioning
on data x for now. We’ll come back to it later.
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Substitution Sampling

e We would like to estimate marginals p(z) and p(y), given that
p(x | y) and p(y | x) are available.
e We can write

plz) = / p(@ | Yp@)dy, ply) = / oy | 2)p(e)da

e Substituting p(y) into the expression for p(z) yields

p@) = [ ple 1) [ [t x’)za(x’)dx'} Iy

-/ [ e x’)dy] pla!)da’

N g
-~

:=h(x,x")

e This suggests an iterative process to get to p(x), through a series
of distributions p;(z) ~ p(x), such that

pia(e) = [ ho. 2 )pi(a) e
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Substitution Sampling

Marginal distributions

p(x) = [plz | y)py)dy, ply)=[py|z)p(z)d

Algorithm:
e Initialize a distribution pg(z).
o Sample 20 ~ py(x).
e For k =1,...,: iterations:

o Sample y*) ~ p(y | z = z(k=1),
o Sample z*) ~ p(z | y = y*¥).

o At the end of i iterations, collect samples (¥, y(®).

Repeat the algorithm m times to generate iid pairs (:1:?, yy)) for
7=1,....m.
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Substitution Sampling

Why does this algorithm work?

o Tanner and Wong (1987) showed that z(?) LY p(z) and y® LN p(y).
So for ¢ large enough, we can take {xg-i), yj(l)}"?”:1 as approximate
samples from the marginal distributions.

e We can also obtain an estimate of p(x) via Monte Carlo:

p(z) = pi(z) = % Em:p(w ly=y")
j=1
e Can easily extend to 3 or more variables by writing, e.g.,
p(o) = [ ple.z | y)p(o)dyd:
p(0) = [ .y | 2ple)dadz

mwzfm%zmmmmw
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Gibbs Sampling

@ Suppose we instead write the factorization of 3 variables as:

plz) = / p( | 2. 9)p(= | v)p(y)dyd:
p(y) = /p(y |z, 2)p(x | 2)p(z)dxdz
p(z) = / p(z |y, 2)p(y | )p(x)dxdy

and we only know the full conditionals.

@ We can no longer use substitution sampling as is, since it requires
knowledge of both full conditionals and reduced conditionals (e.g.

p(z | y)).
e Gibbs sampling is an MCMC method which relies only on
sampling from the full conditionals.
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Gibbs Sampling

Suppose we would like to sample from K marginal distributions,
p(uy),...,plug). Assume that the full conditionals p(uy | u-x) for
k=1,..., K are available.

(0 ) (0)

o Initialize uy

U
e Sample u( ) ~ p(uq | u< ). (0)).
e Sample ugl) p(ug | uy ),uéo), : ..ugg)).
. And so on.
After i iterations, collect samples (ugi), . ,u(f?). To obtain multiple iid

samples, one could repeat the algorithm m times, or subsample a single
sequence of samples (since successive samples will be correlated).
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Gibbs Sampling

Why does this algorithm work?
@ Geman and Geman (1984) showed that

(4) ())

(uy”, ..

In fact, this holds under any visiting order, as long as each
variable is visited infinitely often.

—>p(u1,...,uK)

@ They also showed the ergodic theorem for Gibbs sampling. For
any measurable f whose expectation exists,

ZliglOsz u$) B B(f(ur, ... ur))

@ We can obtain an estimate of the density of u; for K =1,..., K by
Monte Carlo:

) 1 «— '
pilu) = — > plus, | up = ~uf)
j=1
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Relationship Between Substitution and Gibbs Sampling

In the case of two random variables, Gibbs sampling and substitution
sampling are identical.
For K > 2 variables,

e Gibbs sampling requires K full conditional distributions.

e Substitution sampling requires K (K — 1) conditional distributions
(including all K full conditional distributions.
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Relationship Between Substitution and Gibbs Sampling

Substitution-sampling algorithm may be carried out under availability
of just the set of full conditional distributions:

o If p(y|x) is unavailable, we can create a sub-substitution loop to
obtain it via

plylz) = / p(ylz, 2)p(z]z)dz
plz]z) = / p(=]z, y)p(yle)dy

e For K variables, this idea can be extended to estimate an arbitrary
reduced conditional distribution, given the full conditionals.

@ When the set of K full conditionals are available,
substitution-sampling algorithm and Gibbs sampler are equivalent.
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Relationship Between Substitution and Gibbs Sampling

Accelerated convergence from the substitution-sampling algorithm
when some reduced distributions (distinct from the full conditional
distributions) are available:

@ Write the substitution algorithm with appropriate conditioning to
capture these reduced conditionals.

e As we traverse a cycle, we would sample from these distributions
as we come to them (otherwise sampling from the full conditional
distributions).
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Importance Sampling

e Rubin (1987) suggested a nontierative Monte Carlo method for
generating marginal distributions using importance-sampling.

@ Suppose we want to compute p(x), given x p(z,y) and p(z|y), and
p(y) is unknown.
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Importance Sampling

e Choose an importance-sampling distribution denoted ps(y) for YV
that has positive support wherever Y does, i.e.

supp(ps(y)) 2 supp(p(y))-
e Draw iid pairs (X;,Y;) for [ =1,..., N from joint distribution; for
example, draw Y] from ps(y) and X; from p(z|Y;).

e Compute importance weights w; := p(X;,Y7)/ (p(X1, Y1)ps(Y7)).
e Estimate marginal density p(x) by

o p(x) X3 p(x) as N — oo for a.s. .
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Revisiting the Hierarchical Gaussian Model

Recall the hierarchical Gaussian model:

Tspn~N(ls,02) forn=1,...,Nyands=1,...,8
Oy ~ N(u,7%) fors=1,...,8

02 ~1IG(ay,by) fors=1,...,8

o~ N(po, op)

7% ~ IG(as, bo)

The full conditional distributions can be found in closed form:

o p(0s | p, 72,02, {xsn}) and p(u | 72,{0s,0%}, {xs,}) are Gaussian
distributions

o p(o? | p, 72,05, {xsn}) and p(7? | u,{0s,0%},{xs,}) are inverse
gamma distributions.
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Revisiting the Hierarchical Gaussian Model

Inv. Gamma, alpha = beta = 0.01

Density
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Figure 1: Inverse gamma prior for o2 and 72
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Revisiting the Hierarchical Gaussian Model

Normal(0, 1072)

Density
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Figure 2: Normal prior for u
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Revisiting the Hierarchical Gaussian Model
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(b) Estimated posteriors for model
(a) Trace plots for model parameters. parameters.
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Notable developments since then

e Hamiltonian Monte Carlo (HMC) (Neal, 1996):

e HMC is an instance of the MH algorithm. Proposals are generated
via Hamiltonian dynamics evolution simulated through a
time-reversible and volume-conserving numerical integrator.

e Stan: A probabilistic programming language for statistical
inference written in C+4+-.

o Allows for easy specification of Bayesian hierarchical model and fast
inference based on a variant of the No-U-Turn sampler (NUTS,

Hoffman and Gelman, 2014).
@ Incorporation of deep neural networks in computing posteriors:

o A Deep Generative Approach to Conditional Sampling, (Zhou et

al., 2023 JASA)
o Metropolis-Hastings via Classification, (Wang et al., 2022 JMLR)
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