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A review of the hypothesis testing framework
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A Decision Problem

Data are sampled from some distribution paramaterized by θ:

X ∼ Pθ

θ ∈ Ω

Furthermore, the parameter space Ω can be split into disjoint

subclasses known as ”hypotheses”:

H0 : θ ∈ Ω0 ⊂ Ω (null hypothesis)

H1 : θ ∈ Ω1 = Ω \ Ω0 (alternative hypothesis)

Our goal is to infer which hypothesis is correct.
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The Neyman-Pearson Paradigm

Reject H0 Retain H0

θ ∈ Ω0 Type I error Good

θ ∈ Ω1 Good Type II error

Level of significance: A level-α test guarantees that

PH0(Type I error) ≤ α.

power = 1− PH1(Type II error)

Under the Neyman-Pearson paradigm, a test procedure maximizes
the power subject to the level of significance. The only guarantee
is a type I error rate less than α.
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Examples

Typically, θ is an unobservable state of the universe which interests

us, and H0 represents our default state of belief:

H0: Male and female births are equally likely.

H0: No difference in expected blood pressure after treatment.

H0: The true regression coefficient β1 is zero.
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Examples

But what if we perform multiple tests?

H0j : No difference in expected blood pressure after treatment j .

H0j : The true jth regression coefficient βj is zero.

Recall that we only control the type I error rate, typically at level

α = 0.05.

What does this mean for the state of science?
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Testing multiple hypotheses
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Traditional type-I error control

Each dot represents a

hypothesis being tested. A

bold dot represents

rejecting the null

hypothesis (declaring a

discovery).

We imagine an army of

scientists all around the

world, all testing their own

hypotheses.

Type-I error control says:

out of all the dots, all the

hypotheses tested around

the world, at most 5% are

bold black dots (false

discoveries).

But if only the discoveries

are published, we don’t

get to see all the dots!



9/25

The file-drawer effect: what do we actually see?
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FDR lets us control the proportion of false discoveries out of all

discoveries, not out of all hypotheses tested

FDR control puts an upper bound on

E

(
false discoveries

false discoveries + true discoveries

)
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Formal introduction to FDR control
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FWER and FDR

declared declared

non-signif. significant Total

H0 true U V n0
H0 false T S n − n0

n − R R n

Familywise error rate (FWER) = P(V ≥ 1)

False discovery proportion (FDP):

FDP =
V

max(R, 1)
=

{
V /R if R ≥ 1

0 if R = 0

False discovery rate (FDR) = E[FDP]
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Connections

If all the hypotheses are true, then

FDR control ≡ FWER control

Any procedure that controls the FWER must also control the FDR

(since FDP = 0 when R = 0 and FDP ≤ 1 when R ≥ 1)

Control FDR instead of controlling FWER?
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FWER vs. FDR (contd.)

Small # hypotheses → FWER control ✓ (but, may lack power)

Large-scale studies → FWER control may miss important findings

FDR control sacrifices some stringency to permit exploration with a

few false positives

FDR control does not assure a specific study, but ensures that

science as a whole will be alright!
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The BH procedure
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The BH procedure

Say we want to control the FDR at level α

Compute p-values p1, . . . , pn for the n hypotheses H1, . . . ,Hn

Sort the p-values: p(1) ≤ p(2) ≤ · · · ≤ p(n)

BHα procedure: Reject H(1), . . . ,H(i0) where

i0 = max{i : p(i) ≤ iα/n}
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The BH procedure
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BH allows more discoveries than Bonferroni
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BH allows more discoveries than Bonferroni
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Historical notes

Simes (1986) mentioned BH procedure for weak FWER control

controls FWER when all the hypotheses are true

Hommel (1988): it does not control FWER in the strong sense

for some config of non-nulls, P(false discovery) can be more than α
Hochberg (1988) gives a procedure for strong FWER control

i0 = max

{
i : p(i) ≤

α

n + 1− i

}
vs i0 = max

{
i : p(i) ≤

iα

n

}
BH argue how their procedure rejects more than the above one
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Figure 1: FDR control makes more rejections (and has more power) than FWER control
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Theoretical guarantees
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FDR control

Theorem (Benjamini & Hochberg, 1995). The BHα procedure controls

the FDR at level α if the p-values are independent:

FDR =
n0
n
α ≤ α.

Numerous proofs, see our Stats 300C lecture notes for a couple of them
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BH has more power

Theorem (BH, 1995). The BH procedure is a solution of the problem:

choose t that maximizes the number of rejections at this level, R(t),

subject to the constraint R(t)/n ≥ t/α.

↵i/n

i/ni0/n

p-values

(a) p-values on the y axis, indices on x

t/↵

t

F̂ (t)

t0

(b) p-values on the x axis, indices on y

Image courtesy: Emmanuel Candès’s 300C lecture notes
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Proof of FDR control by Martingale theory (Storey et al., 2004)

Consider rejecting all Hi with p-values pi ≤ t, where t ∈ (0, 1)

H0 not rejected H0 rejected Total

H0 true U(t) V (t) n0
H0 false T (t) S(t) n − n0

n − R(t) R(t) n

V (t)/t is a backwards martingale E[V (s)
s | F≥t ] =

1
s
s
tV (t) for s ≤ t

BH rejects all Hi with pi ≤ τ ⇒ τ is a stopping time

FDR(τ) = E
[

V (τ)

R(τ) ∨ 1

]
pic
≤ α

n
E
[
V (τ)

τ

]
OST
=

α

n
E
[
V (1)

1

]
def
= α

n0
n

≤ α

Storey’s procedure improves upon BH, by doing better than
n0
n

≤ 1
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BH under dependence

Theorem (Benjamini & Yekutieli, 2001). Under arbitrary dependence of

the p-values, the BHα procedure has the following guarantee

FDR =
n0
n
αH(n) ≤ αH(n)

where H(n) = 1 + 1
2 + · · ·+ 1

n ≈ log n + 0.577.

Theorem (Guo & Rao, 2008). There are joint distributions of p-values

for which FDR of the BH procedure is at least min{αH(n), 1}.
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The e-BH procedure (Wang & Ramdas, 2020)

e-value: f is an e-value if E(f ) ≤ 1 (under null)

1/(e-value) is a valid p-value P(f −1 ≤ α) = P(f ≥ 1
α
) ≤ αEf ≤ α

e-BH procedure: apply BH to a bunch of (e-values)−1

Theorem (Wang & Ramdas, 2020). The e-BH procedure has FDR

at most αn0/n ≤ α (same guarantee as for the usual BH procedure

with independent p-values)
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Editorializing

Traditional type-I error control fails when you test multiple

hypotheses but suppress null findings.

FDR is a statistical fix. But we also need sociological or cultural
fixes: change the incentives in science so we can see more of the
null findings.

Preregistration

Journals for null results

Evaluation criteria for job candidates, tenure, prestigious awards: do

we value shocking results, or careful study design?
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Thank You!

Questions?


