Controlling the False Discovery Rate (Benjamini \& Hochberg, 1995)

Aditya Ghosh \& Michael Salerno
Presenting for Stats 319 (Journal Club)
January 29, 2024

Acknowledgment: Our presentation is largely inspired by the 300C lectures by Prof. Emmanuel Candès

A review of the hypothesis testing framework

A Decision Problem

Data are sampled from some distribution paramaterized by θ :

- $X \sim \mathbb{P}_{\theta}$
- $\theta \in \Omega$

Furthermore, the parameter space Ω can be split into disjoint subclasses known as "hypotheses":

$$
\begin{array}{ll}
H_{0}: \theta \in \Omega_{0} \subset \Omega & \text { (null hypothesis) } \\
H_{1}: \theta \in \Omega_{1}=\Omega \backslash \Omega_{0} & \text { (alternative hypothesis) }
\end{array}
$$

Our goal is to infer which hypothesis is correct.

The Neyman-Pearson Paradigm

	Reject H_{0}	Retain H_{0}
$\theta \in \Omega_{0}$	Type I error	Good
$\theta \in \Omega_{1}$	Good	Type II error

- Level of significance: A level- α test guarantees that $\mathbb{P}_{H_{0}}($ Type I error $) \leq \alpha$.
- power $=1-\mathbb{P}_{H_{1}}$ (Type II error)

Under the Neyman-Pearson paradigm, a test procedure maximizes the power subject to the level of significance. The only guarantee is a type \mathbf{I} error rate less than α.

Examples

Typically, θ is an unobservable state of the universe which interests us, and H_{0} represents our default state of belief:

- H_{0} : Male and female births are equally likely.
- H_{0} : No difference in expected blood pressure after treatment.
- H_{0} : The true regression coefficient β_{1} is zero.

Examples

But what if we perform multiple tests?

- $H_{0 j}$: No difference in expected blood pressure after treatment j.
- $H_{0 j}$: The true j th regression coefficient β_{j} is zero.

Recall that we only control the type I error rate, typically at level $\alpha=0.05$.
What does this mean for the state of science?

Testing multiple hypotheses

Traditional type-I error control

The file-drawer effect: what do we actually see?

FDR lets us control the proportion of false discoveries out of all discoveries, not out of all hypotheses tested

FDR control puts an upper bound on

$$
E\left(\frac{\text { false discoveries }}{\text { false discoveries }+ \text { true discoveries }}\right)
$$

Formal introduction to FDR control

FWER and FDR

	declared non-signif.	declared significant	Total
H_{0} true	U	V	n_{0}
H_{0} false	T	S	$n-n_{0}$
	$n-R$	R	n

- Familywise error rate (FWER) $=\mathbb{P}(V \geq 1)$
- False discovery proportion (FDP):

$$
\mathrm{FDP}=\frac{V}{\max (R, 1)}= \begin{cases}V / R & \text { if } R \geq 1 \\ 0 & \text { if } R=0\end{cases}
$$

- False discovery rate $(\mathrm{FDR})=\mathbb{E}[\mathrm{FDP}]$

Connections

- If all the hypotheses are true, then

FDR control \equiv FWER control

Connections

- If all the hypotheses are true, then

FDR control \equiv FWER control

- Any procedure that controls the FWER must also control the FDR (since $F D P=0$ when $R=0$ and $F D P \leq 1$ when $R \geq 1$)

Connections

- If all the hypotheses are true, then

FDR control \equiv FWER control

- Any procedure that controls the FWER must also control the FDR (since $F D P=0$ when $R=0$ and $F D P \leq 1$ when $R \geq 1$)

Control FDR instead of controlling FWER?

FWER vs. FDR (contd.)

- Small \# hypotheses \rightarrow FWER control \checkmark (but, may lack power)
- Large-scale studies \rightarrow FWER control may miss important findings

FWER vs. FDR (contd.)

- Small \# hypotheses \rightarrow FWER control \checkmark (but, may lack power)
- Large-scale studies \rightarrow FWER control may miss important findings
- FDR control sacrifices some stringency to permit exploration with a few false positives

FWER vs. FDR (contd.)

- Small \# hypotheses \rightarrow FWER control \checkmark (but, may lack power)
- Large-scale studies \rightarrow FWER control may miss important findings
- FDR control sacrifices some stringency to permit exploration with a few false positives
- FDR control does not assure a specific study, but ensures that science as a whole will be alright!

The BH procedure

The BH procedure

- Say we want to control the FDR at level α

The BH procedure

- Say we want to control the FDR at level α
- Compute p-values p_{1}, \ldots, p_{n} for the n hypotheses H_{1}, \ldots, H_{n}

The BH procedure

- Say we want to control the FDR at level α
- Compute p-values p_{1}, \ldots, p_{n} for the n hypotheses H_{1}, \ldots, H_{n}
- Sort the p-values: $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(n)}$

The BH procedure

- Say we want to control the FDR at level α
- Compute p-values p_{1}, \ldots, p_{n} for the n hypotheses H_{1}, \ldots, H_{n}
- Sort the p-values: $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(n)}$
- BH_{α} procedure: Reject $H_{(1)}, \ldots, H_{\left(i_{0}\right)}$ where

$$
i_{0}=\max \left\{i: p_{(i)} \leq i \alpha / n\right\}
$$

The BH procedure

The BH procedure

The BH procedure

The BH procedure

BH allows more discoveries than Bonferroni

BH allows more discoveries than Bonferroni

Historical notes

- Simes (1986) mentioned BH procedure for weak FWER control controls FWER when all the hypotheses are true

Historical notes

- Simes (1986) mentioned BH procedure for weak FWER control
- Hommel (1988): it does not control FWER in the strong sense for some config of non-nulls, P (false discovery) can be more than α

Historical notes

- Simes (1986) mentioned BH procedure for weak FWER control
- Hommel (1988): it does not control FWER in the strong sense
- Hochberg (1988) gives a procedure for strong FWER control

$$
i_{0}=\max \left\{i: p_{(i)} \leq \frac{\alpha}{n+1-i}\right\} \quad \text { vs } \quad i_{0}=\max \left\{i: p_{(i)} \leq \frac{i \alpha}{n}\right\}
$$

Historical notes

- Simes (1986) mentioned BH procedure for weak FWER control
- Hommel (1988): it does not control FWER in the strong sense
- Hochberg (1988) gives a procedure for strong FWER control

$$
i_{0}=\max \left\{i: p_{(i)} \leq \frac{\alpha}{n+1-i}\right\} \quad \text { vs } \quad i_{0}=\max \left\{i: p_{(i)} \leq \frac{i \alpha}{n}\right\}
$$

- BH argue how their procedure rejects more than the above one

Figure 1: FDR control makes more rejections (and has more power) than FWER control

Theoretical guarantees

FDR control

Theorem (Benjamini \& Hochberg, 1995). The BH_{α} procedure controls the FDR at level α if the p -values are independent:

$$
\mathrm{FDR}=\frac{n_{0}}{n} \alpha \leq \alpha
$$

FDR control

Theorem (Benjamini \& Hochberg, 1995). The BH_{α} procedure controls the FDR at level α if the p -values are independent:

$$
\mathrm{FDR}=\frac{n_{0}}{n} \alpha \leq \alpha
$$

Numerous proofs, see our Stats 300C lecture notes for a couple of them

BH has more power

Theorem (BH, 1995). The BH procedure is a solution of the problem: choose t that maximizes the number of rejections at this level, $R(t)$, subject to the constraint $R(t) / n \geq t / \alpha$.

BH has more power

Theorem (BH, 1995). The BH procedure is a solution of the problem: choose t that maximizes the number of rejections at this level, $R(t)$, subject to the constraint $R(t) / n \geq t / \alpha$.

(a) p-values on the y axis, indices on x

(b) p-values on the x axis, indices on y

Proof of FDR control by Martingale theory (Storey et al., 2004)

Consider rejecting all H_{i} with p -values $p_{i} \leq t$, where $t \in(0,1)$

	H_{0} not rejected	H_{0} rejected	Total
H_{0} true	$U(t)$	$V(t)$	n_{0}
H_{0} false	$T(t)$	$S(t)$	$n-n_{0}$
	$n-R(t)$	$R(t)$	n

Proof of FDR control by Martingale theory (Storey et al., 2004)

Consider rejecting all H_{i} with p-values $p_{i} \leq t$, where $t \in(0,1)$

	H_{0} not rejected	H_{0} rejected	Total
H_{0} true	$U(t)$	$V(t)$	n_{0}
H_{0} false	$T(t)$	$S(t)$	$n-n_{0}$
	$n-R(t)$	$R(t)$	n

$V(t) / t$ is a backwards martingale $\mathbb{E}\left[\left.\frac{V(s)}{s} \right\rvert\, \mathcal{F}_{\geq t}\right]=\frac{1}{s} \frac{s}{t} V(t)$ for $s \leq t$

Proof of FDR control by Martingale theory (Storey et al., 2004)

Consider rejecting all H_{i} with p-values $p_{i} \leq t$, where $t \in(0,1)$

	H_{0} not rejected	H_{0} rejected	Total
H_{0} true	$U(t)$	$V(t)$	n_{0}
H_{0} false	$T(t)$	$S(t)$	$n-n_{0}$
	$n-R(t)$	$R(t)$	n

$V(t) / t$ is a backwards martingale $\left.\mathbb{E}\left[\left.\frac{V(s)}{s} \right\rvert\, \mathcal{F}_{\geq t}\right]=\frac{1}{s} t\right\rangle(t)$ for $s \leq t$ BH rejects all H_{i} with $p_{i} \leq \tau \Rightarrow \tau$ is a stopping time

Proof of FDR control by Martingale theory (Storey et al., 2004)

Consider rejecting all H_{i} with p-values $p_{i} \leq t$, where $t \in(0,1)$

	H_{0} not rejected	H_{0} rejected	Total
H_{0} true	$U(t)$	$V(t)$	n_{0}
H_{0} false	$T(t)$	$S(t)$	$n-n_{0}$
	$n-R(t)$	$R(t)$	n

$V(t) / t$ is a backwards martingale $\mathbb{E}\left[\left.\frac{V(s)}{s} \right\rvert\, \mathcal{F}_{\geq t}\right]=\frac{1}{s} s V(t)$ for $s \leq t$ BH rejects all H_{i} with $p_{i} \leq \tau \Rightarrow \tau$ is a stopping time

$$
\operatorname{FDR}(\tau)=\mathbb{E}\left[\frac{V(\tau)}{R(\tau) \vee 1}\right] \stackrel{\text { pic }}{\leq} \frac{\alpha}{n} \mathbb{E}\left[\frac{V(\tau)}{\tau}\right] \stackrel{\text { OST }}{=} \frac{\alpha}{n} \mathbb{E}\left[\frac{V(1)}{1}\right] \stackrel{\text { def }}{=} \alpha \frac{n_{0}}{n} \leq \alpha
$$

Proof of FDR control by Martingale theory (Storey et al., 2004)

Consider rejecting all H_{i} with p-values $p_{i} \leq t$, where $t \in(0,1)$

	H_{0} not rejected	H_{0} rejected	Total
H_{0} true	$U(t)$	$V(t)$	n_{0}
H_{0} false	$T(t)$	$S(t)$	$n-n_{0}$
	$n-R(t)$	$R(t)$	n

$V(t) / t$ is a backwards martingale $\mathbb{E}\left[\left.\frac{V(s)}{s} \right\rvert\, \mathcal{F}_{\geq t}\right]=\frac{1}{s} \frac{s}{t} V(t)$ for $s \leq t$ BH rejects all H_{i} with $p_{i} \leq \tau \Rightarrow \tau$ is a stopping time

$$
\operatorname{FDR}(\tau)=\mathbb{E}\left[\frac{V(\tau)}{R(\tau) \vee 1}\right] \stackrel{\text { pic }}{\leq} \frac{\alpha}{n} \mathbb{E}\left[\frac{V(\tau)}{\tau}\right] \stackrel{\text { OsT }}{=} \frac{\alpha}{n} \mathbb{E}\left[\frac{V(1)}{1}\right] \stackrel{\text { def }}{=} \alpha \frac{n_{0}}{n} \leq \alpha
$$

Storey's procedure improves upon BH, by doing better than $\frac{n_{0}}{n} \leq 1$

BH under dependence

Theorem (Benjamini \& Yekutieli, 2001). Under arbitrary dependence of the p -values, the BH_{α} procedure has the following guarantee

$$
\mathrm{FDR}=\frac{n_{0}}{n} \alpha H(n) \leq \alpha H(n)
$$

where $H(n)=1+\frac{1}{2}+\cdots+\frac{1}{n} \approx \log n+0.577$.

BH under dependence

Theorem (Benjamini \& Yekutieli, 2001). Under arbitrary dependence of the p-values, the BH_{α} procedure has the following guarantee

$$
\mathrm{FDR}=\frac{n_{0}}{n} \alpha H(n) \leq \alpha H(n)
$$

where $H(n)=1+\frac{1}{2}+\cdots+\frac{1}{n} \approx \log n+0.577$.

Theorem (Guo \& Rao, 2008). There are joint distributions of p-values for which FDR of the BH procedure is at least $\min \{\alpha H(n), 1\}$.

The e-BH procedure (Wang \& Ramdas, 2020)

- e-value: f is an e-value if $\mathbb{E}(f) \leq 1$ (under null)

The e-BH procedure (Wang \& Ramdas, 2020)

- e-value: f is an e-value if $\mathbb{E}(f) \leq 1$ (under null)
- $1 /(e$-value $)$ is a valid p-value

$$
\mathbb{P}\left(f^{-1} \leq \alpha\right)=\mathbb{P}\left(f \geq \frac{1}{\alpha}\right) \leq \alpha \mathbb{E} f \leq \alpha
$$

The e-BH procedure (Wang \& Ramdas, 2020)

- e-value: f is an e-value if $\mathbb{E}(f) \leq 1$ (under null)
- $1 /(e$-value $)$ is a valid p-value $\quad \mathbb{P}\left(f^{-1} \leq \alpha\right)=\mathbb{P}\left(f \geq \frac{1}{\alpha}\right) \leq \alpha \mathbb{E} f \leq \alpha$
- e-BH procedure: apply BH to a bunch of (e-values) $)^{-1}$

The e-BH procedure (Wang \& Ramdas, 2020)

- e-value: f is an e-value if $\mathbb{E}(f) \leq 1$ (under null)
- $1 /(e$-value) is a valid p-value $\mathbb{P}\left(f^{-1} \leq \alpha\right)=\mathbb{P}\left(f \geq \frac{1}{\alpha}\right) \leq \alpha \mathbb{E} f \leq \alpha$
- e-BH procedure: apply BH to a bunch of (e-values) $)^{-1}$
- Theorem (Wang \& Ramdas, 2020). The e-BH procedure has FDR at most $\alpha n_{0} / n \leq \alpha$ (same guarantee as for the usual BH procedure with independent p -values)

Editorializing

- Traditional type-I error control fails when you test multiple hypotheses but suppress null findings.
- FDR is a statistical fix. But we also need sociological or cultural fixes: change the incentives in science so we can see more of the null findings.
- Preregistration
- Journals for null results
- Evaluation criteria for job candidates, tenure, prestigious awards: do we value shocking results, or careful study design?

What are Open Science Badges?

- Badges to acknowledge open science practices are incentives for researchers to share data, materials, or to preregister
- Badges signal to the reader that the content has been made available and certify its accessibility in a persistent location.
- Currently, over 100 journals offer Open Science Badges to signal and reward when underlying data, materials, or preregistrations are available, see below.

Journal of Articles in Support of the Null Hypothesis

INDEX ABOUT MANUSCRIPT REVIEWER EDITORIAL CONTACT SUBMISSION SUBMISSION BOARD

Welcome to the Journal of Articles in Support of the Null Hypothesis. In the past other journals and reviewers have exhibited a bias against articles that did not reject the null hypothesis. We seek to change that by offering an outlet for experiments that do not reach the traditional significance levels ($p<.05$). Thus, reducing the file drawer problem, and reducing the bias in psychological literature. Without such a resource researchers could be wasting their time examining empirical questions that have already been examined. We collect these articles and provide them to the scientific community free of cost.

Journal of Negative Results in Biomedicine

Article Talk
From Wikipedia, the free encyclopedia

The Journal of Negative Results in Biomedicine was a peer-reviewed open access medical journal. It published papers that promote a discussion of unexpected, controversial, provocative and/or negative results in the context of current research. The journal was established in 2002 and ceased publishing in September 2017. It was abstracted and indexed in the Emerging Sources Citation Index, ${ }^{[1]}$ Index Medicus/MEDLINE/PubMed, ${ }^{[2]}$ and Scopus. ${ }^{[3]}$

Thank You!

Questions?

